BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

375 related articles for article (PubMed ID: 26057186)

  • 21. A Monte Carlo study on electron and neutron contamination caused by the presence of hip prosthesis in photon mode of a 15 MV Siemens PRIMUS linac.
    Bahreyni Toossi MT; Behmadi M; Ghorbani M; Gholamhosseinian H
    J Appl Clin Med Phys; 2013 Sep; 14(5):52-67. PubMed ID: 24036859
    [TBL] [Abstract][Full Text] [Related]  

  • 22. AAA and PBC calculation accuracy in the surface build-up region in tangential beam treatments. Phantom and breast case study with the Monte Carlo code PENELOPE.
    Panettieri V; Barsoum P; Westermark M; Brualla L; Lax I
    Radiother Oncol; 2009 Oct; 93(1):94-101. PubMed ID: 19541380
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Monte carlo electron source model validation for an Elekta Precise linac.
    Ali OA; Willemse CA; Shaw W; O'Reilly FH; du Plessis FC
    Med Phys; 2011 May; 38(5):2366-73. PubMed ID: 21776771
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Neutron spectra in a tissue equivalent phantom during photon radiotherapy treatment by LINACS.
    Zanini A; Durisi E; Fasolo F; Visca L; Ongaro C; Nastasi U; Burn KW; Annand JR
    Radiat Prot Dosimetry; 2004; 110(1-4):157-60. PubMed ID: 15353639
    [TBL] [Abstract][Full Text] [Related]  

  • 25. MEASUREMENTS OF THE PARASITIC NEUTRON DOSE AT ORGANS FROM MEDICAL LINACS AT DIFFERENT ENERGIES BY USING BUBBLE DETECTORS.
    Alikaniotis K; Severgnini M; Giannini G; Milan V
    Radiat Prot Dosimetry; 2018 Aug; 180(1-4):267-272. PubMed ID: 29361109
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Monte Carlo estimation of photoneutrons contamination from high-energy X-ray medical accelerators in treatment room and maze: a simplified model.
    Zabihzadeh M; Ay MR; Allahverdi M; Mesbahi A; Mahdavi SR; Shahriari M
    Radiat Prot Dosimetry; 2009 Jul; 135(1):21-32. PubMed ID: 19483207
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A virtual photon source model of an Elekta linear accelerator with integrated mini MLC for Monte Carlo based IMRT dose calculation.
    Sikora M; Dohm O; Alber M
    Phys Med Biol; 2007 Aug; 52(15):4449-63. PubMed ID: 17634643
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Calculation of out-of-field dose distribution in carbon-ion radiotherapy by Monte Carlo simulation.
    Yonai S; Matsufuji N; Namba M
    Med Phys; 2012 Aug; 39(8):5028-39. PubMed ID: 22894428
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Investigating in-field and out-of-field neutron contamination in high-energy medical linear accelerators based on the treatment factors of field size, depth, beam modifiers, and beam type.
    Biltekin F; Yeginer M; Ozyigit G
    Phys Med; 2015 Jul; 31(5):517-23. PubMed ID: 25873196
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The impact of automatic wedge filter on photoneutron and photon spectra of an 18-MV photon beam.
    Ghavami SM; Mesbahi A; Mohammadi E
    Radiat Prot Dosimetry; 2010 Feb; 138(2):123-8. PubMed ID: 19789200
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The evaluation of neutron and gamma ray dose equivalent distributions in patients and the effectiveness of shield materials for high energy photons radiotherapy facilities.
    Ghassoun J; Senhou N
    Appl Radiat Isot; 2012 Apr; 70(4):620-4. PubMed ID: 22257567
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Validation of a virtual source model of medical linac for Monte Carlo dose calculation using multi-threaded Geant4.
    Aboulbanine Z; El Khayati N
    Phys Med Biol; 2018 Apr; 63(8):085008. PubMed ID: 29553478
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bremsstrahlung and photoneutron production in a steel shield for 15-22-MeV clinical electron beams.
    Fujita Y; Myojoyama A; Saitoh H
    Radiat Prot Dosimetry; 2015 Feb; 163(2):148-59. PubMed ID: 24821930
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Neutron spectra and dosimetric features around an 18 mv linac accelerator.
    Barquero R; Mendez R; Vega-Carrillo HR; Iñiguez MP; Edwards TM
    Health Phys; 2005 Jan; 88(1):48-58. PubMed ID: 15596989
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Neutron spectra and dose equivalents calculated in tissue for high-energy radiation therapy.
    Kry SF; Howell RM; Salehpour M; Followill DS
    Med Phys; 2009 Apr; 36(4):1244-50. PubMed ID: 19472632
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Neutron dosimetry in organs of an adult human phantom using linacs with multileaf collimator in radiotherapy treatments.
    Martinez-Ovalle SA; Barquero R; Gomez-Ros JM; Lallena AM
    Med Phys; 2012 May; 39(5):2854-66. PubMed ID: 22559658
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Design for an accelerator-based orthogonal epithermal neutron beam for boron neutron capture therapy.
    Allen DA; Beynon TD; Green S
    Med Phys; 1999 Jan; 26(1):71-6. PubMed ID: 9949400
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Measurements of the neutron dose equivalent for various radiation qualities, treatment machines and delivery techniques in radiation therapy.
    Hälg RA; Besserer J; Boschung M; Mayer S; Lomax AJ; Schneider U
    Phys Med Biol; 2014 May; 59(10):2457-68. PubMed ID: 24778349
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A physics-based analytical model of absorbed dose from primary, leakage, and scattered photons from megavoltage radiotherapy with MLCs.
    Schneider CW; Newhauser WD; Wilson LJ; Kapsch RP
    Phys Med Biol; 2019 Sep; 64(18):185017. PubMed ID: 31535622
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Monte Carlo simulation of secondary radiation exposure from high-energy photon therapy using an anthropomorphic phantom.
    Frankl M; Macián-Juan R
    Radiat Prot Dosimetry; 2016 Mar; 168(4):537-45. PubMed ID: 26311702
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.