These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 26057246)

  • 1. Study on the antibacterial mechanism of copper ion- and neodymium ion-modified α-zirconium phosphate with better antibacterial activity and lower cytotoxicity.
    Cai X; Zhang B; Liang Y; Zhang J; Yan Y; Chen X; Wu Z; Liu H; Wen S; Tan S; Wu T
    Colloids Surf B Biointerfaces; 2015 Aug; 132():281-9. PubMed ID: 26057246
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis and characterization of size-controlled nano-Cu
    Zhou J; Wang C; Cunningham AJ; Hu Z; Xiang H; Sun B; Zuo W; Zhu M
    Mater Sci Eng C Mater Biol Appl; 2019 Aug; 101():499-504. PubMed ID: 31029344
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrothermal synthesis of copper zirconium phosphate hydrate [Cu(OH)2Zr(HPO4)2·2H2O] and an investigation of its lubrication properties in grease.
    Zhang X; Xu H; Zuo Z; Lin Z; Ferdov S; Dong J
    ACS Appl Mater Interfaces; 2013 Aug; 5(16):7989-94. PubMed ID: 23895405
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antibacterial nanostructured composite films for biomedical applications: microstructural characteristics, biocompatibility, and antibacterial mechanisms.
    Lee FP; Wang DY; Chen LK; Kung CM; Wu YC; Ou KL; Yu CH
    Biofouling; 2013; 29(3):295-305. PubMed ID: 23528126
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antibacterial activity of novel synthesized chitosan-graft-poly(N-tertiary butylacrylamide)/neodymium composites for biomedical application.
    Yazdıç FC; Karaman A; Torğut G; Ayhan NK
    J Basic Microbiol; 2023 Sep; 63(9):1049-1056. PubMed ID: 37078826
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Morphology effect on antibacterial activity of cuprous oxide.
    Pang H; Gao F; Lu Q
    Chem Commun (Camb); 2009 Mar; (9):1076-8. PubMed ID: 19225641
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct intercalation of bis-2,2',2″,6-terpyridylcobalt(III) into zirconium phosphate layers for biosensing applications.
    Santiago-Berríos MB; Declet-Flores C; David A; Borrero S; Vélez MM; Díaz-Díaz A; Guadalupe AR; Colón JL
    Langmuir; 2012 Mar; 28(9):4447-52. PubMed ID: 22316317
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation and antibacterial activities of polyaniline/Cu0.05Zn0.95O nanocomposites.
    Liang X; Sun M; Li L; Qiao R; Chen K; Xiao Q; Xu F
    Dalton Trans; 2012 Mar; 41(9):2804-11. PubMed ID: 22249414
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation and preliminary assessment of polymer-supported zirconium phosphate for selective lead removal from contaminated water.
    Pan B; Pan B; Chen X; Zhang W; Zhang X; Zhang Q; Zhang Q; Chen J
    Water Res; 2006 Aug; 40(15):2938-46. PubMed ID: 16844183
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct electron transfer of hemoglobin in layered alpha-zirconium phosphate with a high thermal stability.
    Liu Y; Lu C; Hou W; Zhu JJ
    Anal Biochem; 2008 Apr; 375(1):27-34. PubMed ID: 18211815
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selective heavy metals removal from waters by amorphous zirconium phosphate: behavior and mechanism.
    Pan B; Zhang Q; Du W; Zhang W; Pan B; Zhang Q; Xu Z; Zhang Q
    Water Res; 2007 Jul; 41(14):3103-11. PubMed ID: 17433402
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The antibacterial properties and biocompatibility of a Ti-Cu sintered alloy for biomedical application.
    Liu J; Zhang X; Wang H; Li F; Li M; Yang K; Zhang E
    Biomed Mater; 2014 Apr; 9(2):025013. PubMed ID: 24565798
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis and characterization of bovine serum albumin-copper nanocomposites for antibacterial applications.
    Rastogi L; Arunachalam J
    Colloids Surf B Biointerfaces; 2013 Aug; 108():134-41. PubMed ID: 23531744
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation and characterization of the antibacterial Cu nanoparticle formed on the surface of SiO2 nanoparticles.
    Kim YH; Lee DK; Cha HG; Kim CW; Kang YC; Kang YS
    J Phys Chem B; 2006 Dec; 110(49):24923-8. PubMed ID: 17149913
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antibacterial activities of Nd doped and Ag coated TiO2 nanoparticles under solar light irradiation.
    Bokare A; Sanap A; Pai M; Sabharwal S; Athawale AA
    Colloids Surf B Biointerfaces; 2013 Feb; 102():273-80. PubMed ID: 23010118
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly effective removal of heavy metals by polymer-based zirconium phosphate: a case study of lead ion.
    Pan BC; Zhang QR; Zhang WM; Pan BJ; Du W; Lv L; Zhang QJ; Xu ZW; Zhang QX
    J Colloid Interface Sci; 2007 Jun; 310(1):99-105. PubMed ID: 17336317
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation and properties of antibacterial polyvinyl chloride.
    Lu JY; He C; Wang SY; Lin ZF; Li WF
    Eur Rev Med Pharmacol Sci; 2014; 18(10):1448-53. PubMed ID: 24899601
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antibacterial effect of Cu2+-exchanged montmorillonite on Aeromonas hydrophila and discussion on its mechanism.
    Hu CH; Xu ZR; Xia MS
    Vet Microbiol; 2005 Aug; 109(1-2):83-8. PubMed ID: 15939555
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new antibacterial titanium-copper sintered alloy: preparation and antibacterial property.
    Zhang E; Li F; Wang H; Liu J; Wang C; Li M; Yang K
    Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):4280-7. PubMed ID: 23910344
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metal-enzyme frameworks: role of metal ions in promoting enzyme self-assembly on α-zirconium(IV) phosphate nanoplates.
    Pattammattel A; Deshapriya IK; Chowdhury R; Kumar CV
    Langmuir; 2013 Mar; 29(9):2971-81. PubMed ID: 23373444
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.