BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 26057262)

  • 1. Long-term continuous production of H2 in a microbial electrolysis cell (MEC) treating saline wastewater.
    Carmona-Martínez AA; Trably E; Milferstedt K; Lacroix R; Etcheverry L; Bernet N
    Water Res; 2015 Sep; 81():149-56. PubMed ID: 26057262
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generation of high current densities by pure cultures of anode-respiring Geoalkalibacter spp. under alkaline and saline conditions in microbial electrochemical cells.
    Badalamenti JP; Krajmalnik-Brown R; Torres CI
    mBio; 2013 Apr; 4(3):e00144-13. PubMed ID: 23631915
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancing bioelectrochemical hydrogen production from industrial wastewater using Ni-foam cathodes in a microbial electrolysis cell pilot plant.
    Guerrero-Sodric O; Baeza JA; Guisasola A
    Water Res; 2024 Jun; 256():121616. PubMed ID: 38657305
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Boosting hydrogen production from fermentation effluent of biomass wastes in cylindrical single-chamber microbial electrolysis cell.
    Zhang J; Chang H; Li X; Jiang B; Wei T; Sun X; Liang D
    Environ Sci Pollut Res Int; 2022 Dec; 29(59):89727-89737. PubMed ID: 35857167
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of applied potential on phosphine formation in synthetic wastewater treatment by Microbial Electrolysis Cell (MEC).
    Liu W; Niu X; Chen W; An S; Sheng H
    Chemosphere; 2017 Apr; 173():172-179. PubMed ID: 28110006
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrogen production and wastewater treatment in a microbial electrolysis cell with a biocathode.
    Xu Y; Jiang Y; Chen Y; Zhu S; Shen S
    Water Environ Res; 2014 Jul; 86(7):649-53. PubMed ID: 25112032
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An MEC-MFC-coupled system for biohydrogen production from acetate.
    Sun M; Sheng GP; Zhang L; Xia CR; Mu ZX; Liu XW; Wang HL; Yu HQ; Qi R; Yu T; Yang M
    Environ Sci Technol; 2008 Nov; 42(21):8095-100. PubMed ID: 19031908
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Damage of anodic biofilms by high salinity deteriorates PAHs degradation in single-chamber microbial electrolysis cell reactor.
    Ding P; Wu P; Jie Z; Cui MH; Liu H
    Sci Total Environ; 2021 Jul; 777():145752. PubMed ID: 33684746
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of ammonia on electrochemical active biofilm in microbial electrolysis cells for synthetic swine wastewater treatment.
    Wang N; Feng Y; Li Y; Zhang L; Liu J; Li N; He W
    Water Res; 2022 Jul; 219():118570. PubMed ID: 35597221
    [TBL] [Abstract][Full Text] [Related]  

  • 10. H
    Rivera I; Bakonyi P; Buitrón G
    Chemosphere; 2017 Mar; 171():379-385. PubMed ID: 28033568
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Examination of protein degradation in continuous flow, microbial electrolysis cells treating fermentation wastewater.
    Nam JY; Yates MD; Zaybak Z; Logan BE
    Bioresour Technol; 2014 Nov; 171():182-6. PubMed ID: 25194912
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Increased performance of hydrogen production in microbial electrolysis cells under alkaline conditions.
    Rago L; Baeza JA; Guisasola A
    Bioelectrochemistry; 2016 Jun; 109():57-62. PubMed ID: 26855359
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrogen production in single chamber microbial electrolysis cells with different complex substrates.
    Montpart N; Rago L; Baeza JA; Guisasola A
    Water Res; 2015 Jan; 68():601-15. PubMed ID: 25462766
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Introducing an affordable catalyst for biohydrogen production in microbial electrolysis cells.
    Ghasemi B; Yaghmaei S; Abdi K; Mardanpour MM; Haddadi SA
    J Biosci Bioeng; 2020 Jan; 129(1):67-76. PubMed ID: 31445821
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Shift of biofilm and suspended bacterial communities with changes in anode potential in a microbial electrolysis cell treating primary sludge.
    Zakaria BS; Lin L; Dhar BR
    Sci Total Environ; 2019 Nov; 689():691-699. PubMed ID: 31280150
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microbial electrolysis cells for the production of biohydrogen in dark fermentation - A review.
    Lee HS; Xin W; Katakojwala R; Venkata Mohan S; Tabish NMD
    Bioresour Technol; 2022 Nov; 363():127934. PubMed ID: 36100184
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Significance of biological hydrogen oxidation in a continuous single-chamber microbial electrolysis cell.
    Lee HS; Rittmann BE
    Environ Sci Technol; 2010 Feb; 44(3):948-54. PubMed ID: 20030379
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiple syntrophic interactions drive biohythane production from waste sludge in microbial electrolysis cells.
    Liu Q; Ren ZJ; Huang C; Liu B; Ren N; Xing D
    Biotechnol Biofuels; 2016; 9():162. PubMed ID: 27489567
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved hydrogen production in the microbial electrolysis cell by inhibiting methanogenesis using ultraviolet irradiation.
    Hou Y; Luo H; Liu G; Zhang R; Li J; Fu S
    Environ Sci Technol; 2014 Sep; 48(17):10482-8. PubMed ID: 25111871
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrogen consumption in microbial electrochemical systems (MXCs): the role of homo-acetogenic bacteria.
    Parameswaran P; Torres CI; Lee HS; Rittmann BE; Krajmalnik-Brown R
    Bioresour Technol; 2011 Jan; 102(1):263-71. PubMed ID: 20430615
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.