These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 26057345)

  • 1. Comprehensive prediction of drug-protein interactions and side effects for the human proteome.
    Zhou H; Gao M; Skolnick J
    Sci Rep; 2015 Jun; 5():11090. PubMed ID: 26057345
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Review and comparative assessment of similarity-based methods for prediction of drug-protein interactions in the druggable human proteome.
    Wang C; Kurgan L
    Brief Bioinform; 2019 Nov; 20(6):2066-2087. PubMed ID: 30102367
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Large-scale detection of drug off-targets: hypotheses for drug repurposing and understanding side-effects.
    Chartier M; Morency LP; Zylber MI; Najmanovich RJ
    BMC Pharmacol Toxicol; 2017 Apr; 18(1):18. PubMed ID: 28449705
    [TBL] [Abstract][Full Text] [Related]  

  • 4. TargetNet: a web service for predicting potential drug-target interaction profiling via multi-target SAR models.
    Yao ZJ; Dong J; Che YJ; Zhu MF; Wen M; Wang NN; Wang S; Lu AP; Cao DS
    J Comput Aided Mol Des; 2016 May; 30(5):413-24. PubMed ID: 27167132
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Systems biology analysis of protein-drug interactions.
    Colinge J; Rix U; Bennett KL; Superti-Furga G
    Proteomics Clin Appl; 2012 Jan; 6(1-2):102-16. PubMed ID: 22213655
    [TBL] [Abstract][Full Text] [Related]  

  • 6. FINDSITE-metal: integrating evolutionary information and machine learning for structure-based metal-binding site prediction at the proteome level.
    Brylinski M; Skolnick J
    Proteins; 2011 Mar; 79(3):735-51. PubMed ID: 21287609
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A weighted and integrated drug-target interactome: drug repurposing for schizophrenia as a use case.
    Huang LC; Soysal E; Zheng W; Zhao Z; Xu H; Sun J
    BMC Syst Biol; 2015; 9 Suppl 4(Suppl 4):S2. PubMed ID: 26100720
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploring the associations between drug side-effects and therapeutic indications.
    Wang F; Zhang P; Cao N; Hu J; Sorrentino R
    J Biomed Inform; 2014 Oct; 51():15-23. PubMed ID: 24727480
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting drugs side effects based on chemical-chemical interactions and protein-chemical interactions.
    Chen L; Huang T; Zhang J; Zheng MY; Feng KY; Cai YD; Chou KC
    Biomed Res Int; 2013; 2013():485034. PubMed ID: 24078917
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PDID: database of molecular-level putative protein-drug interactions in the structural human proteome.
    Wang C; Hu G; Wang K; Brylinski M; Xie L; Kurgan L
    Bioinformatics; 2016 Feb; 32(4):579-86. PubMed ID: 26504143
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adverse drug reaction prediction using scores produced by large-scale drug-protein target docking on high-performance computing machines.
    LaBute MX; Zhang X; Lenderman J; Bennion BJ; Wong SE; Lightstone FC
    PLoS One; 2014; 9(9):e106298. PubMed ID: 25191698
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Development of antituberculous drugs: current status and future prospects].
    Tomioka H; Namba K
    Kekkaku; 2006 Dec; 81(12):753-74. PubMed ID: 17240921
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inferring protein domains associated with drug side effects based on drug-target interaction network.
    Iwata H; Mizutani S; Tabei Y; Kotera M; Goto S; Yamanishi Y
    BMC Syst Biol; 2013; 7 Suppl 6(Suppl 6):S18. PubMed ID: 24565527
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relating drug-protein interaction network with drug side effects.
    Mizutani S; Pauwels E; Stoven V; Goto S; Yamanishi Y
    Bioinformatics; 2012 Sep; 28(18):i522-i528. PubMed ID: 22962476
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient multi-task chemogenomics for drug specificity prediction.
    Playe B; Azencott CA; Stoven V
    PLoS One; 2018; 13(10):e0204999. PubMed ID: 30286165
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Large-scale automatic extraction of side effects associated with targeted anticancer drugs from full-text oncological articles.
    Xu R; Wang Q
    J Biomed Inform; 2015 Jun; 55():64-72. PubMed ID: 25817969
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Uncovering Drug Mechanism of Action by Proteome Wide- Identification of Drug-Binding Proteins.
    Cui T; Hou H; Sun Y; Cang H; Wang X
    Med Chem; 2017; 13(6):526-535. PubMed ID: 28523998
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Virtual affinity fingerprints for target fishing: a new application of Drug Profile Matching.
    Peragovics Á; Simon Z; Tombor L; Jelinek B; Hári P; Czobor P; Málnási-Csizmadia A
    J Chem Inf Model; 2013 Jan; 53(1):103-13. PubMed ID: 23215025
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An integrated structure- and system-based framework to identify new targets of metabolites and known drugs.
    Naveed H; Hameed US; Harrus D; Bourguet W; Arold ST; Gao X
    Bioinformatics; 2015 Dec; 31(24):3922-9. PubMed ID: 26286808
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of drug-induced myocardial infarction-related protein targets through the prediction of drug-target interactions and analysis of biological processes.
    Ivanov SM; Lagunin AA; Pogodin PV; Filimonov DA; Poroikov VV
    Chem Res Toxicol; 2014 Jul; 27(7):1263-81. PubMed ID: 24920530
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.