These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 26057345)

  • 21. Identification of drug-induced myocardial infarction-related protein targets through the prediction of drug-target interactions and analysis of biological processes.
    Ivanov SM; Lagunin AA; Pogodin PV; Filimonov DA; Poroikov VV
    Chem Res Toxicol; 2014 Jul; 27(7):1263-81. PubMed ID: 24920530
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Large-scale bioactivity analysis of the small-molecule assayed proteome.
    Backman TW; Evans DS; Girke T
    PLoS One; 2017; 12(2):e0171413. PubMed ID: 28178331
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Drug target identification using side-effect similarity.
    Campillos M; Kuhn M; Gavin AC; Jensen LJ; Bork P
    Science; 2008 Jul; 321(5886):263-6. PubMed ID: 18621671
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Systematic Analyses and Prediction of Human Drug Side Effect Associated Proteins from the Perspective of Protein Evolution.
    Begum T; Ghosh TC; Basak S
    Genome Biol Evol; 2017 Feb; 9(2):337-350. PubMed ID: 28391292
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Harvesting candidate genes responsible for serious adverse drug reactions from a chemical-protein interactome.
    Yang L; Chen J; He L
    PLoS Comput Biol; 2009 Jul; 5(7):e1000441. PubMed ID: 19629158
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The drug-minded protein interaction database (DrumPID) for efficient target analysis and drug development.
    Kunz M; Liang C; Nilla S; Cecil A; Dandekar T
    Database (Oxford); 2016; 2016():. PubMed ID: 27055828
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Drug target prediction using adverse event report systems: a pharmacogenomic approach.
    Takarabe M; Kotera M; Nishimura Y; Goto S; Yamanishi Y
    Bioinformatics; 2012 Sep; 28(18):i611-i618. PubMed ID: 22962489
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Prediction of network drug target based on improved model of bipartite graph valuation].
    Liu X; Lu P; Zuo X; Chen J; Yang H; Yang Y; Gao Y
    Zhongguo Zhong Yao Za Zhi; 2012 Jan; 37(2):125-9. PubMed ID: 22737836
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A large-scale computational approach to drug repositioning.
    Li YY; An J; Jones SJ
    Genome Inform; 2006; 17(2):239-47. PubMed ID: 17503396
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Drug repurposing based on drug-drug interaction.
    Zhou B; Wang R; Wu P; Kong DX
    Chem Biol Drug Des; 2015 Feb; 85(2):137-44. PubMed ID: 24934184
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Local Alignment of Ligand Binding Sites in Proteins for Polypharmacology and Drug Repositioning.
    Brylinski M
    Methods Mol Biol; 2017; 1611():109-122. PubMed ID: 28451975
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The analysis of the drug-targets based on the topological properties in the human protein-protein interaction network.
    Zhu M; Gao L; Li X; Liu Z; Xu C; Yan Y; Walker E; Jiang W; Su B; Chen X; Lin H
    J Drug Target; 2009 Aug; 17(7):524-32. PubMed ID: 19530902
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Screening of drug target proteins by 2D ligand matching approach.
    Feng J; Guo H; Wang J; Lu T
    Chem Biol Drug Des; 2014 Feb; 83(2):174-82. PubMed ID: 24034065
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Predicting drug targets based on protein domains.
    Wang YY; Nacher JC; Zhao XM
    Mol Biosyst; 2012 Apr; 8(5):1528-34. PubMed ID: 22402667
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Pharmacogenetics of drugs withdrawn from the market.
    Zhang W; Roederer MW; Chen WQ; Fan L; Zhou HH
    Pharmacogenomics; 2012 Jan; 13(2):223-31. PubMed ID: 22256871
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Phenotypic side effects prediction by optimizing correlation with chemical and target profiles of drugs.
    Kanji R; Sharma A; Bagler G
    Mol Biosyst; 2015 Nov; 11(11):2900-6. PubMed ID: 26252576
    [TBL] [Abstract][Full Text] [Related]  

  • 37. In silico profiling of systemic effects of drugs to predict unexpected interactions.
    Yoo S; Noh K; Shin M; Park J; Lee KH; Nam H; Lee D
    Sci Rep; 2018 Jan; 8(1):1612. PubMed ID: 29371651
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Predicting adverse drug reaction profiles by integrating protein interaction networks with drug structures.
    Huang LC; Wu X; Chen JY
    Proteomics; 2013 Jan; 13(2):313-24. PubMed ID: 23184540
    [TBL] [Abstract][Full Text] [Related]  

  • 39. On the nature of cavities on protein surfaces: application to the identification of drug-binding sites.
    Nayal M; Honig B
    Proteins; 2006 Jun; 63(4):892-906. PubMed ID: 16477622
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Drug side-effect prediction based on the integration of chemical and biological spaces.
    Yamanishi Y; Pauwels E; Kotera M
    J Chem Inf Model; 2012 Dec; 52(12):3284-92. PubMed ID: 23157436
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.