These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 26057385)

  • 41. Normality of oligonucleotide microarray data and implications for parametric statistical analyses.
    Giles PJ; Kipling D
    Bioinformatics; 2003 Nov; 19(17):2254-62. PubMed ID: 14630654
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Performance evaluation of commercial short-oligonucleotide microarrays and the impact of noise in making cross-platform correlations.
    Shippy R; Sendera TJ; Lockner R; Palaniappan C; Kaysser-Kranich T; Watts G; Alsobrook J
    BMC Genomics; 2004 Sep; 5():61. PubMed ID: 15345031
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Considerations when using the significance analysis of microarrays (SAM) algorithm.
    Larsson O; Wahlestedt C; Timmons JA
    BMC Bioinformatics; 2005 May; 6():129. PubMed ID: 15921534
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A statistical framework for the design of microarray experiments and effective detection of differential gene expression.
    Zhang SD; Gant TW
    Bioinformatics; 2004 Nov; 20(16):2821-8. PubMed ID: 15180939
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A nonparametric likelihood ratio test to identify differentially expressed genes from microarray data.
    Bokka S; Mathur SK
    Appl Bioinformatics; 2006; 5(4):267-76. PubMed ID: 17140273
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Improving gene set analysis of microarray data by SAM-GS.
    Dinu I; Potter JD; Mueller T; Liu Q; Adewale AJ; Jhangri GS; Einecke G; Famulski KS; Halloran P; Yasui Y
    BMC Bioinformatics; 2007 Jul; 8():242. PubMed ID: 17612399
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Integrated Genome-Wide Analysis of Gene Expression and DNA Copy Number Variations Highlights Stem Cell-Related Pathways in Small Cell Esophageal Carcinoma.
    Liu D; Xu X; Wen J; Xie L; Zhang J; Shen Y; Jiang G; Chen J; Fan M
    Stem Cells Int; 2018; 2018():3481783. PubMed ID: 30228821
    [No Abstract]   [Full Text] [Related]  

  • 48. Large scale real-time PCR validation on gene expression measurements from two commercial long-oligonucleotide microarrays.
    Wang Y; Barbacioru C; Hyland F; Xiao W; Hunkapiller KL; Blake J; Chan F; Gonzalez C; Zhang L; Samaha RR
    BMC Genomics; 2006 Mar; 7():59. PubMed ID: 16551369
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Novel and simple transformation algorithm for combining microarray data sets.
    Kim KY; Ki DH; Jeong HJ; Jeung HC; Chung HC; Rha SY
    BMC Bioinformatics; 2007 Jun; 8():218. PubMed ID: 17588268
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Microarray data analysis: comparing two population means.
    Deng J; Calvert V; Pierobon M
    Methods Mol Biol; 2012; 823():325-46. PubMed ID: 22081355
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Evaluation of the similarity of gene expression data estimated with SAGE and Affymetrix GeneChips.
    van Ruissen F; Ruijter JM; Schaaf GJ; Asgharnegad L; Zwijnenburg DA; Kool M; Baas F
    BMC Genomics; 2005 Jun; 6():91. PubMed ID: 15955238
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Analysis of oligonucleotide array experiments with repeated measures using mixed models.
    Li H; Wood CL; Getchell TV; Getchell ML; Stromberg AJ
    BMC Bioinformatics; 2004 Dec; 5():209. PubMed ID: 15626348
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Assessment and improvement of statistical tools for comparative proteomics analysis of sparse data sets with few experimental replicates.
    Schwämmle V; León IR; Jensen ON
    J Proteome Res; 2013 Sep; 12(9):3874-83. PubMed ID: 23875961
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Q-GDEMAR: a general method for the identification of differentially expressed genes in microarrays with unbalanced groups.
    Guebel DV; Perera-Alberto M; Torres NV
    Mol Biosyst; 2016 Jan; 12(1):120-32. PubMed ID: 26563436
    [TBL] [Abstract][Full Text] [Related]  

  • 55. An integrated approach for identifying wrongly labelled samples when performing classification in microarray data.
    Leung YY; Chang CQ; Hung YS
    PLoS One; 2012; 7(10):e46700. PubMed ID: 23082127
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Group testing for pathway analysis improves comparability of different microarray datasets.
    Manoli T; Gretz N; Gröne HJ; Kenzelmann M; Eils R; Brors B
    Bioinformatics; 2006 Oct; 22(20):2500-6. PubMed ID: 16895928
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Selection of differentially expressed genes in microarray data analysis.
    Chen JJ; Wang SJ; Tsai CA; Lin CJ
    Pharmacogenomics J; 2007 Jun; 7(3):212-20. PubMed ID: 16940966
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Learning from microarray interlaboratory studies: measures of precision for gene expression.
    Duewer DL; Jones WD; Reid LH; Salit M
    BMC Genomics; 2009 Apr; 10():153. PubMed ID: 19356252
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Ranking differentially expressed genes from Affymetrix gene expression data: methods with reproducibility, sensitivity, and specificity.
    Kadota K; Nakai Y; Shimizu K
    Algorithms Mol Biol; 2009 Apr; 4():7. PubMed ID: 19386098
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Methods that remove batch effects while retaining group differences may lead to exaggerated confidence in downstream analyses.
    Nygaard V; Rødland EA; Hovig E
    Biostatistics; 2016 Jan; 17(1):29-39. PubMed ID: 26272994
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.