BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 26057586)

  • 1. Surface-Enhanced Raman Spectroscopy-Based Approach for Ultrasensitive and Selective Detection of Hydrazine.
    Gu X; Camden JP
    Anal Chem; 2015 Jul; 87(13):6460-4. PubMed ID: 26057586
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sensitive and fast detection of fructose in complex media via symmetry breaking and signal amplification using surface-enhanced Raman spectroscopy.
    Sun F; Bai T; Zhang L; Ella-Menye JR; Liu S; Nowinski AK; Jiang S; Yu Q
    Anal Chem; 2014 Mar; 86(5):2387-94. PubMed ID: 24502256
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Palladium nanoparticles decorated on reduced graphene oxide rotating disk electrodes toward ultrasensitive hydrazine detection: effects of particle size and hydrodynamic diffusion.
    Krittayavathananon A; Srimuk P; Luanwuthi S; Sawangphruk M
    Anal Chem; 2014 Dec; 86(24):12272-8. PubMed ID: 25391449
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection of adenosine triphosphate with an aptamer biosensor based on surface-enhanced Raman scattering.
    Li M; Zhang J; Suri S; Sooter LJ; Ma D; Wu N
    Anal Chem; 2012 Mar; 84(6):2837-42. PubMed ID: 22380526
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface-enhanced Raman spectroscopy detection of polybrominated diphenylethers using a portable Raman spectrometer.
    Jiang X; Lai Y; Wang W; Jiang W; Zhan J
    Talanta; 2013 Nov; 116():14-7. PubMed ID: 24148366
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unique tri-output optical probe for specific and ultrasensitive detection of hydrazine.
    Cui L; Ji C; Peng Z; Zhong L; Zhou C; Yan L; Qu S; Zhang S; Huang C; Qian X; Xu Y
    Anal Chem; 2014 May; 86(9):4611-7. PubMed ID: 24702027
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ZnO oxide films for ultrasensitive, rapid, and label-free detection of neopterin by surface-enhanced Raman spectroscopy.
    Kamińska A; Kowalska AA; Snigurenko D; Guziewicz E; Lewiński J; Waluk J
    Analyst; 2015 Aug; 140(15):5090-8. PubMed ID: 26079846
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of surface-enhanced Raman scattering detection using a handheld and a bench-top Raman spectrometer: a comparative study.
    Zheng J; Pang S; Labuza TP; He L
    Talanta; 2014 Nov; 129():79-85. PubMed ID: 25127567
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Orthogonal Chemical Reporter Strategy Enables Sensitive and Specific SERS Detection of Hydrazine Derivatives.
    Zhou A; Chen X; Li C; Yang W; He J; Fang T; Chen W; Xu Y; Ge H; Chen Z; Ning X
    ACS Appl Mater Interfaces; 2023 Jan; 15(1):2054-2066. PubMed ID: 36579636
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrasensitive and selective detection of copper (II) and mercury (II) ions by dye-coded silver nanoparticle-based SERS probes.
    Li F; Wang J; Lai Y; Wu C; Sun S; He Y; Ma H
    Biosens Bioelectron; 2013 Jan; 39(1):82-7. PubMed ID: 22840330
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface-enhanced Raman spectroscopy combined with atomic force microscopy for ultrasensitive detection of thrombin.
    Bizzarri AR; Cannistraro S
    Anal Biochem; 2009 Oct; 393(2):149-54. PubMed ID: 19563767
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-assembly of Au nanoparticles on PMMA template as flexible, transparent, and highly active SERS substrates.
    Zhong LB; Yin J; Zheng YM; Liu Q; Cheng XX; Luo FH
    Anal Chem; 2014 Jul; 86(13):6262-7. PubMed ID: 24873535
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intelligent and ultrasensitive analysis of mercury trace contaminants via plasmonic metamaterial-based surface-enhanced Raman spectroscopy.
    Cao C; Zhang J; Li S; Xiong Q
    Small; 2014 Aug; 10(16):3252-6. PubMed ID: 24729476
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid monitoring of benzylpenicillin sodium using Raman and surface enhanced Raman spectroscopy.
    Jiang X; Qin X; Yin D; Gong M; Yang L; Zhao B; Ruan W
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Apr; 140():474-8. PubMed ID: 25638429
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrasensitive and quantitative detection of a new β-agonist phenylethanolamine A by a novel immunochromatographic assay based on surface-enhanced Raman scattering (SERS).
    Li M; Yang H; Li S; Zhao K; Li J; Jiang D; Sun L; Deng A
    J Agric Food Chem; 2014 Nov; 62(45):10896-902. PubMed ID: 25343225
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Fluorescein-Based Colorimetric and Fluorescent Probe for Hydrazine and its Bioimaging in Live Cells.
    Li G; Liu Y; Song J; Ye Y
    J Fluoresc; 2017 Jan; 27(1):323-329. PubMed ID: 27815785
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface molecular imprinting onto silver microspheres for surface enhanced Raman scattering applications.
    Chang L; Ding Y; Li X
    Biosens Bioelectron; 2013 Dec; 50():106-10. PubMed ID: 23838276
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detection of alkaline phosphatase using surface-enhanced Raman spectroscopy.
    Ruan C; Wang W; Gu B
    Anal Chem; 2006 May; 78(10):3379-84. PubMed ID: 16689540
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sensitive multiplex detection of serological liver cancer biomarkers using SERS-active photonic crystal fiber probe.
    Dinish US; Balasundaram G; Chang YT; Olivo M
    J Biophotonics; 2014 Nov; 7(11-12):956-65. PubMed ID: 23963680
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrasensitive SERS assay of lysozyme using a novel and unique four-way helical junction molecule probe for signal amplification.
    Zhang Z; Wang Y; Zheng F; Ren R; Zhang S
    Chem Commun (Camb); 2015 Jan; 51(5):907-10. PubMed ID: 25431815
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.