These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 26057595)

  • 1. Developmental changes in spontaneous electrocortical activity and network organization from early to late childhood.
    Miskovic V; Ma X; Chou CA; Fan M; Owens M; Sayama H; Gibb BE
    Neuroimage; 2015 Sep; 118():237-47. PubMed ID: 26057595
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Developmental changes in organization of structural brain networks.
    Khundrakpam BS; Reid A; Brauer J; Carbonell F; Lewis J; Ameis S; Karama S; Lee J; Chen Z; Das S; Evans AC;
    Cereb Cortex; 2013 Sep; 23(9):2072-85. PubMed ID: 22784607
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Frequency specific patterns of resting-state networks development from childhood to adolescence: A magnetoencephalography study.
    Meng L; Xiang J
    Brain Dev; 2016 Nov; 38(10):893-902. PubMed ID: 27287665
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Network analysis of resting state EEG in the developing young brain: structure comes with maturation.
    Boersma M; Smit DJ; de Bie HM; Van Baal GC; Boomsma DI; de Geus EJ; Delemarre-van de Waal HA; Stam CJ
    Hum Brain Mapp; 2011 Mar; 32(3):413-25. PubMed ID: 20589941
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Brain functional connectivity and the pathophysiology of schizophrenia.
    Angelopoulos E
    Psychiatriki; 2014; 25(2):91-4. PubMed ID: 25035177
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neuronal networks in the developing brain are adversely modulated by early psychosocial neglect.
    Stamoulis C; Vanderwert RE; Zeanah CH; Fox NA; Nelson CA
    J Neurophysiol; 2017 Oct; 118(4):2275-2288. PubMed ID: 28679837
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Human brain networks in physiological aging: a graph theoretical analysis of cortical connectivity from EEG data.
    Vecchio F; Miraglia F; Bramanti P; Rossini PM
    J Alzheimers Dis; 2014; 41(4):1239-49. PubMed ID: 24820018
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Charting moment-to-moment brain signal variability from early to late childhood.
    Miskovic V; Owens M; Kuntzelman K; Gibb BE
    Cortex; 2016 Oct; 83():51-61. PubMed ID: 27479615
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Developmental changes in the cortical sources of spontaneous alpha throughout adolescence.
    Howsley P; Levita L
    Int J Psychophysiol; 2018 Nov; 133():91-101. PubMed ID: 30098374
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Task- and stimulus-related cortical networks in language production: Exploring similarity of MEG- and fMRI-derived functional connectivity.
    Liljeström M; Stevenson C; Kujala J; Salmelin R
    Neuroimage; 2015 Oct; 120():75-87. PubMed ID: 26169324
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional cortical connectivity analysis of mental fatigue unmasks hemispheric asymmetry and changes in small-world networks.
    Sun Y; Lim J; Kwok K; Bezerianos A
    Brain Cogn; 2014 Mar; 85():220-30. PubMed ID: 24463002
    [TBL] [Abstract][Full Text] [Related]  

  • 12. EEG sleep slow-wave activity as a mirror of cortical maturation.
    Buchmann A; Ringli M; Kurth S; Schaerer M; Geiger A; Jenni OG; Huber R
    Cereb Cortex; 2011 Mar; 21(3):607-15. PubMed ID: 20624840
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Functional organization of the brain cortical areas at rest condition in children 5, 6 and 7 years old].
    Bezrukikh MM; Terebova NN
    Fiziol Cheloveka; 2010; 36(6):61-9. PubMed ID: 21254608
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cortical connectivity and memory performance in cognitive decline: A study via graph theory from EEG data.
    Vecchio F; Miraglia F; Quaranta D; Granata G; Romanello R; Marra C; Bramanti P; Rossini PM
    Neuroscience; 2016 Mar; 316():143-50. PubMed ID: 26724581
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of infant mu rhythm immediately before crawling: A high-resolution EEG study.
    Xiao R; Qi X; Patino A; Fagg AH; Kolobe THA; Miller DP; Ding L
    Neuroimage; 2017 Feb; 146():47-57. PubMed ID: 27847348
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The maturation of cortical sleep rhythms and networks over early development.
    Chu CJ; Leahy J; Pathmanathan J; Kramer MA; Cash SS
    Clin Neurophysiol; 2014 Jul; 125(7):1360-70. PubMed ID: 24418219
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural damage in early preterm brain changes the electric resting state networks.
    Omidvarnia A; Metsäranta M; Lano A; Vanhatalo S
    Neuroimage; 2015 Oct; 120():266-73. PubMed ID: 26163804
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neocortical pathological high-frequency oscillations are associated with frequency-dependent alterations in functional network topology.
    Ibrahim GM; Anderson R; Akiyama T; Ochi A; Otsubo H; Singh-Cadieux G; Donner E; Rutka JT; Snead OC; Doesburg SM
    J Neurophysiol; 2013 Nov; 110(10):2475-83. PubMed ID: 24004529
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Growing trees in child brains: graph theoretical analysis of electroencephalography-derived minimum spanning tree in 5- and 7-year-old children reflects brain maturation.
    Boersma M; Smit DJ; Boomsma DI; De Geus EJ; Delemarre-van de Waal HA; Stam CJ
    Brain Connect; 2013; 3(1):50-60. PubMed ID: 23106635
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Does greater low frequency EEG activity in normal immaturity and in children with epilepsy arise in the same neuronal network?
    Michels L; Bucher K; Brem S; Halder P; Lüchinger R; Liechti M; Martin E; Jeanmonod D; Kröll J; Brandeis D
    Brain Topogr; 2011 Mar; 24(1):78-89. PubMed ID: 20820898
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.