These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 26057598)

  • 1. Motion trajectory information and agency influence motor learning during observational practice.
    Roberts JW; Bennett SJ; Elliott D; Hayes SJ
    Acta Psychol (Amst); 2015 Jul; 159():76-84. PubMed ID: 26057598
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Top-down attentional processes modulate the coding of atypical biological motion kinematics in the absence of motor signals.
    Hayes SJ; Roberts JW; Elliott D; Bennett SJ
    J Exp Psychol Hum Percept Perform; 2014 Aug; 40(4):1641-53. PubMed ID: 24955699
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Atypical biological motion kinematics are represented by complementary lower-level and top-down processes during imitation learning.
    Hayes SJ; Dutoy CA; Elliott D; Gowen E; Bennett SJ
    Acta Psychol (Amst); 2016 Jan; 163():10-6. PubMed ID: 26587962
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Violating instructed human agency: An fMRI study on ocular tracking of biological and nonbiological motion stimuli.
    Gertz H; Hilger M; Hegele M; Fiehler K
    Neuroimage; 2016 Sep; 138():109-122. PubMed ID: 27223814
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonvisual motor learning improves visual motion perception: evidence from violating the two-thirds power law.
    Beets IA; Rösler F; Fiehler K
    J Neurophysiol; 2010 Sep; 104(3):1612-24. PubMed ID: 20610788
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Atypical biological kinematics are represented during observational practice.
    Foster NC; Bennett SJ; Causer J; Bird G; Andrew M; Hayes SJ
    J Exp Psychol Hum Percept Perform; 2018 Jun; 44(6):842-847. PubMed ID: 29809051
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The decay of motor adaptation to novel movement dynamics reveals an asymmetry in the stability of motion state-dependent learning.
    Hosseini EA; Nguyen KP; Joiner WM
    PLoS Comput Biol; 2017 May; 13(5):e1005492. PubMed ID: 28481891
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Coordination Dynamics of Observational Learning: Relative Motion Direction and Relative Phase as Informational Content Linking Action-Perception to Action-Production.
    Buchanan JJ
    Adv Exp Med Biol; 2016; 957():209-228. PubMed ID: 28035568
    [TBL] [Abstract][Full Text] [Related]  

  • 9. End-point focus manipulations to determine what information is used during observational learning.
    Hayes SJ; Hodges NJ; Huys R; Mark Williams A
    Acta Psychol (Amst); 2007 Oct; 126(2):120-37. PubMed ID: 17204236
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes in visual and sensory-motor resting-state functional connectivity support motor learning by observing.
    McGregor HR; Gribble PL
    J Neurophysiol; 2015 Jul; 114(1):677-88. PubMed ID: 25995349
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction error and regularity detection underlie two dissociable mechanisms for computing the sense of agency.
    Wen W; Haggard P
    Cognition; 2020 Feb; 195():104074. PubMed ID: 31743863
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Visual online control processes are acquired during observational practice.
    Hayes SJ; Elliott D; Bennett SJ
    Acta Psychol (Amst); 2013 Jul; 143(3):298-302. PubMed ID: 23711485
    [TBL] [Abstract][Full Text] [Related]  

  • 13. What activates the human mirror neuron system during observation of artificial movements: bottom-up visual features or top-down intentions?
    Engel A; Burke M; Fiehler K; Bien S; Rösler F
    Neuropsychologia; 2008; 46(7):2033-42. PubMed ID: 18339409
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Motor learning affects visual movement perception.
    Engel A; Burke M; Fiehler K; Bien S; Rösler F
    Eur J Neurosci; 2008 May; 27(9):2294-302. PubMed ID: 18445220
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of manipulating relative and absolute motion information during observational learning of an aiming task.
    Al-Abood SA; Davids K; Bennett SJ; Ashford D; Martinez Marin M
    J Sports Sci; 2001 Jul; 19(7):507-20. PubMed ID: 11461054
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Believe it or not: Moving non-biological stimuli believed to have human origin can be represented as human movement.
    Gowen E; Bolton E; Poliakoff E
    Cognition; 2016 Jan; 146():431-8. PubMed ID: 26550801
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Incidental sequence learning in a motion coherence discrimination task: How response learning affects perception.
    Laubrock J; Kinder A
    J Exp Psychol Hum Percept Perform; 2014 Oct; 40(5):1963-77. PubMed ID: 25068698
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of stimulus velocity profile on rhythmic visuomotor coordination.
    Varlet M; Coey CA; Schmidt RC; Marin L; Bardy BG; Richardson MJ
    J Exp Psychol Hum Percept Perform; 2014 Oct; 40(5):1849-60. PubMed ID: 25019498
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intercepting accelerated moving targets: effects of practice on movement performance.
    Fialho JVAP; Tresilian JR
    Exp Brain Res; 2017 Apr; 235(4):1257-1268. PubMed ID: 28197673
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Auditory coding of human movement kinematics.
    Vinken PM; Kröger D; Fehse U; Schmitz G; Brock H; Effenberg AO
    Multisens Res; 2013; 26(6):533-52. PubMed ID: 24800411
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.