These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 26057716)

  • 1. VS-APPLE: A Virtual Screening Algorithm Using Promiscuous Protein-Ligand Complexes.
    Okuno T; Kato K; Terada TP; Sasai M; Chikenji G
    J Chem Inf Model; 2015 Jun; 55(6):1108-19. PubMed ID: 26057716
    [TBL] [Abstract][Full Text] [Related]  

  • 2. LigMatch: a multiple structure-based ligand matching method for 3D virtual screening.
    Kinnings SL; Jackson RM
    J Chem Inf Model; 2009 Sep; 49(9):2056-66. PubMed ID: 19685924
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using consensus-shape clustering to identify promiscuous ligands and protein targets and to choose the right query for shape-based virtual screening.
    Pérez-Nueno VI; Ritchie DW
    J Chem Inf Model; 2011 Jun; 51(6):1233-48. PubMed ID: 21604699
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of several molecular docking programs: pose prediction and virtual screening accuracy.
    Cross JB; Thompson DC; Rai BK; Baber JC; Fan KY; Hu Y; Humblet C
    J Chem Inf Model; 2009 Jun; 49(6):1455-74. PubMed ID: 19476350
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SABRE: ligand/structure-based virtual screening approach using consensus molecular-shape pattern recognition.
    Wei NN; Hamza A
    J Chem Inf Model; 2014 Jan; 54(1):338-46. PubMed ID: 24328054
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient virtual screening using multiple protein conformations described as negative images of the ligand-binding site.
    Virtanen SI; Pentikäinen OT
    J Chem Inf Model; 2010 Jun; 50(6):1005-11. PubMed ID: 20504004
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comprehensive comparison of ligand-based virtual screening tools against the DUD data set reveals limitations of current 3D methods.
    Venkatraman V; Pérez-Nueno VI; Mavridis L; Ritchie DW
    J Chem Inf Model; 2010 Dec; 50(12):2079-93. PubMed ID: 21090728
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Benchmarking Data Sets for the Evaluation of Virtual Ligand Screening Methods: Review and Perspectives.
    Lagarde N; Zagury JF; Montes M
    J Chem Inf Model; 2015 Jul; 55(7):1297-307. PubMed ID: 26038804
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toward fully automated high performance computing drug discovery: a massively parallel virtual screening pipeline for docking and molecular mechanics/generalized Born surface area rescoring to improve enrichment.
    Zhang X; Wong SE; Lightstone FC
    J Chem Inf Model; 2014 Jan; 54(1):324-37. PubMed ID: 24358939
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure-based virtual screening approach for discovery of covalently bound ligands.
    Toledo Warshaviak D; Golan G; Borrelli KW; Zhu K; Kalid O
    J Chem Inf Model; 2014 Jul; 54(7):1941-50. PubMed ID: 24932913
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Virtual drug screen schema based on multiview similarity integration and ranking aggregation.
    Kang H; Sheng Z; Zhu R; Huang Q; Liu Q; Cao Z
    J Chem Inf Model; 2012 Mar; 52(3):834-43. PubMed ID: 22332590
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lead finder: an approach to improve accuracy of protein-ligand docking, binding energy estimation, and virtual screening.
    Stroganov OV; Novikov FN; Stroylov VS; Kulkov V; Chilov GG
    J Chem Inf Model; 2008 Dec; 48(12):2371-85. PubMed ID: 19007114
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extended template-based modeling and evaluation method using consensus of binding mode of GPCRs for virtual screening.
    Sato M; Hirokawa T
    J Chem Inf Model; 2014 Nov; 54(11):3153-61. PubMed ID: 25350693
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recipes for the selection of experimental protein conformations for virtual screening.
    Rueda M; Bottegoni G; Abagyan R
    J Chem Inf Model; 2010 Jan; 50(1):186-93. PubMed ID: 20000587
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel approach for efficient pharmacophore-based virtual screening: method and applications.
    Dror O; Schneidman-Duhovny D; Inbar Y; Nussinov R; Wolfson HJ
    J Chem Inf Model; 2009 Oct; 49(10):2333-43. PubMed ID: 19803502
    [TBL] [Abstract][Full Text] [Related]  

  • 16. FieldScreen: virtual screening using molecular fields. Application to the DUD data set.
    Cheeseright TJ; Mackey MD; Melville JL; Vinter JG
    J Chem Inf Model; 2008 Nov; 48(11):2108-17. PubMed ID: 18991371
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identifying and characterizing promiscuous targets: implications for virtual screening.
    Pérez-Nueno VI; Ritchie DW
    Expert Opin Drug Discov; 2012 Jan; 7(1):1-17. PubMed ID: 22468890
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PoLi: A Virtual Screening Pipeline Based on Template Pocket and Ligand Similarity.
    Roy A; Srinivasan B; Skolnick J
    J Chem Inf Model; 2015 Aug; 55(8):1757-70. PubMed ID: 26225536
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ranking targets in structure-based virtual screening of three-dimensional protein libraries: methods and problems.
    Kellenberger E; Foata N; Rognan D
    J Chem Inf Model; 2008 May; 48(5):1014-25. PubMed ID: 18412328
    [TBL] [Abstract][Full Text] [Related]  

  • 20. LS-align: an atom-level, flexible ligand structural alignment algorithm for high-throughput virtual screening.
    Hu J; Liu Z; Yu DJ; Zhang Y
    Bioinformatics; 2018 Jul; 34(13):2209-2218. PubMed ID: 29462237
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.