These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 26057716)
1. VS-APPLE: A Virtual Screening Algorithm Using Promiscuous Protein-Ligand Complexes. Okuno T; Kato K; Terada TP; Sasai M; Chikenji G J Chem Inf Model; 2015 Jun; 55(6):1108-19. PubMed ID: 26057716 [TBL] [Abstract][Full Text] [Related]
2. LigMatch: a multiple structure-based ligand matching method for 3D virtual screening. Kinnings SL; Jackson RM J Chem Inf Model; 2009 Sep; 49(9):2056-66. PubMed ID: 19685924 [TBL] [Abstract][Full Text] [Related]
3. Using consensus-shape clustering to identify promiscuous ligands and protein targets and to choose the right query for shape-based virtual screening. Pérez-Nueno VI; Ritchie DW J Chem Inf Model; 2011 Jun; 51(6):1233-48. PubMed ID: 21604699 [TBL] [Abstract][Full Text] [Related]
4. Comparison of several molecular docking programs: pose prediction and virtual screening accuracy. Cross JB; Thompson DC; Rai BK; Baber JC; Fan KY; Hu Y; Humblet C J Chem Inf Model; 2009 Jun; 49(6):1455-74. PubMed ID: 19476350 [TBL] [Abstract][Full Text] [Related]
5. SABRE: ligand/structure-based virtual screening approach using consensus molecular-shape pattern recognition. Wei NN; Hamza A J Chem Inf Model; 2014 Jan; 54(1):338-46. PubMed ID: 24328054 [TBL] [Abstract][Full Text] [Related]
6. Efficient virtual screening using multiple protein conformations described as negative images of the ligand-binding site. Virtanen SI; Pentikäinen OT J Chem Inf Model; 2010 Jun; 50(6):1005-11. PubMed ID: 20504004 [TBL] [Abstract][Full Text] [Related]
7. Comprehensive comparison of ligand-based virtual screening tools against the DUD data set reveals limitations of current 3D methods. Venkatraman V; Pérez-Nueno VI; Mavridis L; Ritchie DW J Chem Inf Model; 2010 Dec; 50(12):2079-93. PubMed ID: 21090728 [TBL] [Abstract][Full Text] [Related]
8. Benchmarking Data Sets for the Evaluation of Virtual Ligand Screening Methods: Review and Perspectives. Lagarde N; Zagury JF; Montes M J Chem Inf Model; 2015 Jul; 55(7):1297-307. PubMed ID: 26038804 [TBL] [Abstract][Full Text] [Related]
9. Toward fully automated high performance computing drug discovery: a massively parallel virtual screening pipeline for docking and molecular mechanics/generalized Born surface area rescoring to improve enrichment. Zhang X; Wong SE; Lightstone FC J Chem Inf Model; 2014 Jan; 54(1):324-37. PubMed ID: 24358939 [TBL] [Abstract][Full Text] [Related]
11. Virtual drug screen schema based on multiview similarity integration and ranking aggregation. Kang H; Sheng Z; Zhu R; Huang Q; Liu Q; Cao Z J Chem Inf Model; 2012 Mar; 52(3):834-43. PubMed ID: 22332590 [TBL] [Abstract][Full Text] [Related]
12. Lead finder: an approach to improve accuracy of protein-ligand docking, binding energy estimation, and virtual screening. Stroganov OV; Novikov FN; Stroylov VS; Kulkov V; Chilov GG J Chem Inf Model; 2008 Dec; 48(12):2371-85. PubMed ID: 19007114 [TBL] [Abstract][Full Text] [Related]
13. Extended template-based modeling and evaluation method using consensus of binding mode of GPCRs for virtual screening. Sato M; Hirokawa T J Chem Inf Model; 2014 Nov; 54(11):3153-61. PubMed ID: 25350693 [TBL] [Abstract][Full Text] [Related]
14. Recipes for the selection of experimental protein conformations for virtual screening. Rueda M; Bottegoni G; Abagyan R J Chem Inf Model; 2010 Jan; 50(1):186-93. PubMed ID: 20000587 [TBL] [Abstract][Full Text] [Related]