These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 26057716)

  • 21. Virtual screening of compound libraries.
    Cerqueira NM; Sousa SF; Fernandes PA; Ramos MJ
    Methods Mol Biol; 2009; 572():57-70. PubMed ID: 20694685
    [TBL] [Abstract][Full Text] [Related]  

  • 22. CRDOCK: an ultrafast multipurpose protein-ligand docking tool.
    Cortés Cabrera Á; Klett J; Dos Santos HG; Perona A; Gil-Redondo R; Francis SM; Priego EM; Gago F; Morreale A
    J Chem Inf Model; 2012 Aug; 52(8):2300-9. PubMed ID: 22764680
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ligand-guided receptor optimization.
    Katritch V; Rueda M; Abagyan R
    Methods Mol Biol; 2012; 857():189-205. PubMed ID: 22323222
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The use of protein-ligand interaction fingerprints in docking.
    Brewerton SC
    Curr Opin Drug Discov Devel; 2008 May; 11(3):356-64. PubMed ID: 18428089
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparative evaluation of 3D virtual ligand screening methods: impact of the molecular alignment on enrichment.
    Giganti D; Guillemain H; Spadoni JL; Nilges M; Zagury JF; Montes M
    J Chem Inf Model; 2010 Jun; 50(6):992-1004. PubMed ID: 20527883
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cosolvent-Based Protein Pharmacophore for Ligand Enrichment in Virtual Screening.
    Arcon JP; Defelipe LA; Lopez ED; Burastero O; Modenutti CP; Barril X; Marti MA; Turjanski AG
    J Chem Inf Model; 2019 Aug; 59(8):3572-3583. PubMed ID: 31373819
    [TBL] [Abstract][Full Text] [Related]  

  • 27. How to benchmark methods for structure-based virtual screening of large compound libraries.
    Christofferson AJ; Huang N
    Methods Mol Biol; 2012; 819():187-95. PubMed ID: 22183538
    [TBL] [Abstract][Full Text] [Related]  

  • 28. SimG: an alignment based method for evaluating the similarity of small molecules and binding sites.
    Cai C; Gong J; Liu X; Gao D; Li H
    J Chem Inf Model; 2013 Aug; 53(8):2103-15. PubMed ID: 23889471
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Benchmarking of HPCC: A novel 3D molecular representation combining shape and pharmacophoric descriptors for efficient molecular similarity assessments.
    Karaboga AS; Petronin F; Marchetti G; Souchet M; Maigret B
    J Mol Graph Model; 2013 Apr; 41():20-30. PubMed ID: 23467019
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The Development of Target-Specific Pose Filter Ensembles To Boost Ligand Enrichment for Structure-Based Virtual Screening.
    Xia J; Hsieh JH; Hu H; Wu S; Wang XS
    J Chem Inf Model; 2017 Jun; 57(6):1414-1425. PubMed ID: 28511009
    [TBL] [Abstract][Full Text] [Related]  

  • 31. LIGSIFT: an open-source tool for ligand structural alignment and virtual screening.
    Roy A; Skolnick J
    Bioinformatics; 2015 Feb; 31(4):539-44. PubMed ID: 25336501
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Docking ligands into flexible and solvated macromolecules. 7. Impact of protein flexibility and water molecules on docking-based virtual screening accuracy.
    Therrien E; Weill N; Tomberg A; Corbeil CR; Lee D; Moitessier N
    J Chem Inf Model; 2014 Nov; 54(11):3198-210. PubMed ID: 25280064
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Inexpensive Method for Selecting Receptor Structures for Virtual Screening.
    Huang Z; Wong CF
    J Chem Inf Model; 2016 Jan; 56(1):21-34. PubMed ID: 26651874
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Virtual screening in drug design.
    Lill M
    Methods Mol Biol; 2013; 993():1-12. PubMed ID: 23568460
    [TBL] [Abstract][Full Text] [Related]  

  • 35. High-throughput virtual screening of proteins using GRID molecular interaction fields.
    Sciabola S; Stanton RV; Mills JE; Flocco MM; Baroni M; Cruciani G; Perruccio F; Mason JS
    J Chem Inf Model; 2010 Jan; 50(1):155-69. PubMed ID: 19919042
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Importance of consensus region of multiple-ligand templates in a virtual screening method.
    Okuno T; Kato K; Minami S; Terada TP; Sasai M; Chikenji G
    Biophys Physicobiol; 2016; 13():149-156. PubMed ID: 27924269
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structure-based computational approaches for small-molecule modulation of protein-protein interactions.
    Xu D; Wang B; Meroueh SO
    Methods Mol Biol; 2015; 1278():77-92. PubMed ID: 25859944
    [TBL] [Abstract][Full Text] [Related]  

  • 38. REPROVIS-DB: a benchmark system for ligand-based virtual screening derived from reproducible prospective applications.
    Ripphausen P; Wassermann AM; Bajorath J
    J Chem Inf Model; 2011 Oct; 51(10):2467-73. PubMed ID: 21902278
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Prediction of ligand binding using an approach designed to accommodate diversity in protein-ligand interactions.
    Marsh L
    PLoS One; 2011; 6(8):e23215. PubMed ID: 21860668
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Heterogeneous classifier fusion for ligand-based virtual screening: or, how decision making by committee can be a good thing.
    Riniker S; Fechner N; Landrum GA
    J Chem Inf Model; 2013 Nov; 53(11):2829-36. PubMed ID: 24171408
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.