These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 26057727)
21. Assessment of metal contamination in a small mining- and smelting-affected watershed: high resolution monitoring coupled with spatial analysis by GIS. Coynel A; Blanc G; Marache A; Schäfer J; Dabrin A; Maneux E; Bossy C; Masson M; Lavaux G J Environ Monit; 2009 May; 11(5):962-76. PubMed ID: 19436854 [TBL] [Abstract][Full Text] [Related]
22. Profile of trace metals accumulation in core sediment from Seine river estuary (docks basin). Hamzeh M; Ouddane B; El-Daye M; Halwani J Environ Technol; 2013; 34(9-12):1107-16. PubMed ID: 24191442 [TBL] [Abstract][Full Text] [Related]
23. Heavy metals in aquatic macrophytes from two small rivers polluted by urban, agricultural and textile industry sewages SW Poland. Samecka-Cymerman A; Kempers AJ Arch Environ Contam Toxicol; 2007 Aug; 53(2):198-206. PubMed ID: 17549539 [TBL] [Abstract][Full Text] [Related]
24. Seasonal variations and annual fluxes of arsenic in the Garonne, Dordogne and Isle Rivers, France. Masson M; Schäfer J; Blanc G; Pierre A Sci Total Environ; 2007 Feb; 373(1):196-207. PubMed ID: 17169409 [TBL] [Abstract][Full Text] [Related]
25. Trait-based structure of invertebrates along a gradient of sediment colmation: benthos versus hyporheos responses. Descloux S; Datry T; Usseglio-Polatera P Sci Total Environ; 2014 Jan; 466-467():265-76. PubMed ID: 23911840 [TBL] [Abstract][Full Text] [Related]
26. Distribution of metals in surface sediments from a small river flowing through urban and agricultural areas. Igari Y; Tamura T; Ohno M; Suzuki K; Kose T; Kawata K Bull Environ Contam Toxicol; 2012 Oct; 89(4):770-4. PubMed ID: 22918321 [TBL] [Abstract][Full Text] [Related]
27. Comparing pharmaceutical and pesticide loads into a small Mediterranean river. Comoretto L; Chiron S Sci Total Environ; 2005 Oct; 349(1-3):201-10. PubMed ID: 16198681 [TBL] [Abstract][Full Text] [Related]
28. Influence of oscillating flow on hyporheic zone development. Maier HS; Howard KW Ground Water; 2011; 49(6):830-44. PubMed ID: 21309768 [TBL] [Abstract][Full Text] [Related]
29. River Water Quality Model no. 1 (RWQM1): case study. I. Compartmentalisation approach applied to oxygen balances in the River Lahn (Germany). Borchardt D; Reichert P Water Sci Technol; 2001; 43(5):41-9. PubMed ID: 11379155 [TBL] [Abstract][Full Text] [Related]
30. Ecological assessment of combined sewer overflow management practices through the analysis of benthic and hyporheic sediment bacterial assemblages from an intermittent stream. Pozzi ACM; Petit S; Marjolet L; Youenou B; Lagouy M; Namour P; Schmitt L; Navratil O; Breil P; Branger F; Cournoyer B Sci Total Environ; 2024 Jan; 907():167854. PubMed ID: 37848137 [TBL] [Abstract][Full Text] [Related]
31. Modelling transport and transformation of mercury fractions in heavily contaminated mountain streams by coupling a GIS-based hydrological model with a mercury chemistry model. Lin Y; Larssen T; Vogt RD; Feng X; Zhang H Sci Total Environ; 2011 Oct; 409(21):4596-605. PubMed ID: 21855960 [TBL] [Abstract][Full Text] [Related]
32. Daily variations of Zn and Pb concentrations in the Deûle River in relation to the resuspension of heavily polluted sediments. Superville PJ; Prygiel E; Magnier A; Lesven L; Gao Y; Baeyens W; Ouddane B; Dumoulin D; Billon G Sci Total Environ; 2014 Feb; 470-471():600-7. PubMed ID: 24176708 [TBL] [Abstract][Full Text] [Related]
33. First-order contaminant removal in the hyporheic zone of streams: physical insights from a simple analytical model. Grant SB; Stolzenbach K; Azizian M; Stewardson MJ; Boano F; Bardini L Environ Sci Technol; 2014 Oct; 48(19):11369-78. PubMed ID: 25181637 [TBL] [Abstract][Full Text] [Related]
34. Residual effects of lead and zinc mining on freshwater mussels in the Spring River Basin (Kansas, Missouri, and Oklahoma, USA). Angelo RT; Cringan MS; Chamberlain DL; Stahl AJ; Haslouer SG; Goodrich CA Sci Total Environ; 2007 Oct; 384(1-3):467-96. PubMed ID: 17669474 [TBL] [Abstract][Full Text] [Related]
35. Relative influence of watershed and geomorphic features on nutrient and carbon fluxes in a pristine and moderately urbanized stream. Tremblay CC; Botrel M; Lapierre JF; Franssen J; Maranger R Sci Total Environ; 2020 May; 715():136411. PubMed ID: 32040988 [TBL] [Abstract][Full Text] [Related]
36. Historical perspective of heavy metals contamination (Cd, Cr, Cu, Hg, Pb, Zn) in the Seine River basin (France) following a DPSIR approach (1950-2005). Meybeck M; Lestel L; Bonté P; Moilleron R; Colin JL; Rousselot O; Hervé D; de Pontevès C; Grosbois C; Thévenot DR Sci Total Environ; 2007 Apr; 375(1-3):204-31. PubMed ID: 17306338 [TBL] [Abstract][Full Text] [Related]
37. Are surface water characteristics efficient to locate hyporheic biodiversity hotspots? Marmonier P; Creuzé des Châtelliers M; Dole-Olivier MJ; Radakovitch O; Mayer A; Chapuis H; Graillot D; Re-Bahuaud J; Johannet A; Cadilhac L Sci Total Environ; 2020 Oct; 738():139930. PubMed ID: 32531611 [TBL] [Abstract][Full Text] [Related]
38. Fate of organic micropollutants in the hyporheic zone of a eutrophic lowland stream: results of a preliminary field study. Lewandowski J; Putschew A; Schwesig D; Neumann C; Radke M Sci Total Environ; 2011 Apr; 409(10):1824-35. PubMed ID: 21349571 [TBL] [Abstract][Full Text] [Related]
39. Modeling nitrate fluxes at the catchment scale using the integrated tool CAWAQS. Flipo N; Even S; Poulin M; Théry S; Ledoux E Sci Total Environ; 2007 Apr; 375(1-3):69-79. PubMed ID: 17331565 [TBL] [Abstract][Full Text] [Related]
40. Do thermal infrared (TIR) remote sensing and direct hyporheic measurements (DHM) similarly detect river-groundwater exchanges? Study along a 40 km-section of the Ain River (France). Dole-Olivier MJ; Wawzyniak V; Creuzé des Châtelliers M; Marmonier P Sci Total Environ; 2019 Jan; 646():1097-1110. PubMed ID: 30235596 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]