These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 26057850)

  • 1. Efferent Feedback in a Spinal-Like Controller: Reaching With Perturbations.
    Stefanovic F; Galiana HL
    IEEE Trans Neural Syst Rehabil Eng; 2016 Jan; 24(1):140-50. PubMed ID: 26057850
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Simplified Spinal-Like Controller Facilitates Muscle Synergies and Robust Reaching Motions.
    Stefanovic F; Galiana HL
    IEEE Trans Neural Syst Rehabil Eng; 2014 Jan; 22(1):77-87. PubMed ID: 23996578
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An adaptive spinal-like controller: tunable biomimetic behavior for a robotic limb.
    Stefanovic F; Galiana HL
    Biomed Eng Online; 2014 Nov; 13():151. PubMed ID: 25409735
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinematic feedback control laws for generating natural arm movements.
    Kim D; Jang C; Park FC
    Bioinspir Biomim; 2014 Mar; 9(1):016002. PubMed ID: 24343165
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extracting motor synergies from random movements for low-dimensional task-space control of musculoskeletal robots.
    Fu KC; Dalla Libera F; Ishiguro H
    Bioinspir Biomim; 2015 Oct; 10(5):056016. PubMed ID: 26448530
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel theoretical framework for the dynamic stability analysis, movement control, and trajectory generation in a multisegment biomechanical model.
    Iqbal K; Roy A
    J Biomech Eng; 2009 Jan; 131(1):011002. PubMed ID: 19045918
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A biologically inspired neural network controller for ballistic arm movements.
    Bernabucci I; Conforto S; Capozza M; Accornero N; Schmid M; D'Alessio T
    J Neuroeng Rehabil; 2007 Sep; 4():33. PubMed ID: 17767712
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Useful properties of spinal circuits for learning and performing planar reaches.
    Tsianos GA; Goodner J; Loeb GE
    J Neural Eng; 2014 Oct; 11(5):056006. PubMed ID: 25082652
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controlling legs for locomotion-insights from robotics and neurobiology.
    Buschmann T; Ewald A; von Twickel A; Büschges A
    Bioinspir Biomim; 2015 Jun; 10(4):041001. PubMed ID: 26119450
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Internal models of limb dynamics and the encoding of limb state.
    Hwang EJ; Shadmehr R
    J Neural Eng; 2005 Sep; 2(3):S266-78. PubMed ID: 16135889
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Laboratory evaluation of a unified theory for simultaneous multiple axis artificial arm control.
    Jerard RB; Jacobsen SC
    J Biomech Eng; 1980 Aug; 102(3):199. PubMed ID: 19530801
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adaptive tracking for pneumatic muscle actuators in bicep and tricep configurations.
    Lilly JH
    IEEE Trans Neural Syst Rehabil Eng; 2003 Sep; 11(3):333-9. PubMed ID: 14518798
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reflex regulation of antagonist muscles for control of joint equilibrium position.
    Lan N; Li Y; Sun Y; Yang FS
    IEEE Trans Neural Syst Rehabil Eng; 2005 Mar; 13(1):60-71. PubMed ID: 15813407
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neuromechanical model of praying mantis explores the role of descending commands in pre-strike pivots.
    Szczecinski NS; Martin JP; Bertsch DJ; Ritzmann RE; Quinn RD
    Bioinspir Biomim; 2015 Nov; 10(6):065005. PubMed ID: 26580957
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A biologically based neural system coordinates the joints and legs of a tetrapod.
    Hunt A; Schmidt M; Fischer M; Quinn R
    Bioinspir Biomim; 2015 Sep; 10(5):055004. PubMed ID: 26351756
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel bioinspired control approaches to increase the stiffness variability in multi-muscle driven joints.
    Annunziata S; Paskarbeit J; Schneider A
    Bioinspir Biomim; 2011 Dec; 6(4):045003. PubMed ID: 22126821
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic simulation of perturbation responses in a closed-loop virtual arm model.
    Du YF; He X; Lan N
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():4866-9. PubMed ID: 21096650
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Motor adaptation to a small force field superimposed on a large background force.
    Liu J; Reinkensmeyer DJ
    Exp Brain Res; 2007 Apr; 178(3):402-14. PubMed ID: 17091296
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stance leg control: variation of leg parameters supports stable hopping.
    Riese S; Seyfarth A
    Bioinspir Biomim; 2012 Mar; 7(1):016006. PubMed ID: 22183256
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Central mechanisms for force and motion--towards computational synthesis of human movement.
    Hemami H; Dariush B
    Neural Netw; 2012 Dec; 36():167-78. PubMed ID: 23142849
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.