These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

334 related articles for article (PubMed ID: 26057999)

  • 21. Knowledge graph and development hotspots of biochar as an emerging aquatic antibiotic remediator: A scientometric exploration based on VOSviewer and CiteSpace.
    Liu X; Yuan J; Feng Y; Zhang Z; Tang L; Chen H
    J Environ Manage; 2024 Jun; 360():121165. PubMed ID: 38759554
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Efficient removal of antibiotics in surface-flow constructed wetlands, with no observed impact on antibiotic resistance genes.
    Berglund B; Khan GA; Weisner SE; Ehde PM; Fick J; Lindgren PE
    Sci Total Environ; 2014 Apr; 476-477():29-37. PubMed ID: 24448029
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Adsorption of ammonium from simulated wastewater by montmorillonite nanoclay and natural vermiculite: experimental study and simulation.
    Mazloomi F; Jalali M
    Environ Monit Assess; 2017 Aug; 189(8):415. PubMed ID: 28744669
    [TBL] [Abstract][Full Text] [Related]  

  • 24. From wastewater to clean water: Recent advances on the removal of metronidazole, ciprofloxacin, and sulfamethoxazole antibiotics from water through adsorption and advanced oxidation processes (AOPs).
    Gahrouei AE; Vakili S; Zandifar A; Pourebrahimi S
    Environ Res; 2024 Jul; 252(Pt 3):119029. PubMed ID: 38685299
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Removal of emerging contaminants from the environment by adsorption.
    Sophia A C; Lima EC
    Ecotoxicol Environ Saf; 2018 Apr; 150():1-17. PubMed ID: 29253687
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Industrial waste-based adsorbents as a new trend for removal of water-borne emerging contaminants.
    Rangappa HS; Herath I; Lin C; Ch S
    Environ Pollut; 2024 Feb; 343():123140. PubMed ID: 38103712
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The residual tetracycline in pharmaceutical wastewater was effectively removed by using MnO
    Song Z; Ma YL; Li CE
    Sci Total Environ; 2019 Feb; 651(Pt 1):580-590. PubMed ID: 30245414
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Adsorption of pharmaceuticals from biologically treated municipal wastewater using paper mill sludge-based activated carbon.
    Silva CP; Jaria G; Otero M; Esteves VI; Calisto V
    Environ Sci Pollut Res Int; 2019 May; 26(13):13173-13184. PubMed ID: 30903474
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The occurrence, distribution and degradation of antibiotics by ionizing radiation: An overview.
    Wang J; Zhuan R; Chu L
    Sci Total Environ; 2019 Jan; 646():1385-1397. PubMed ID: 30235624
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A review on activated carbon modifications for the treatment of wastewater containing anionic dyes.
    Azam K; Shezad N; Shafiq I; Akhter P; Akhtar F; Jamil F; Shafique S; Park YK; Hussain M
    Chemosphere; 2022 Nov; 306():135566. PubMed ID: 35787877
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Insights on applications of bentonite clays for the removal of dyes and heavy metals from wastewater: a review.
    Dhar AK; Himu HA; Bhattacharjee M; Mostufa MG; Parvin F
    Environ Sci Pollut Res Int; 2023 Jan; 30(3):5440-5474. PubMed ID: 36418828
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Removing ammonium from water and wastewater using cost-effective adsorbents: A review.
    Huang J; Kankanamge NR; Chow C; Welsh DT; Li T; Teasdale PR
    J Environ Sci (China); 2018 Jan; 63():174-197. PubMed ID: 29406102
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Boron removal from wastewater using adsorbents.
    Kluczka J; Trojanowska J; Zolotajkin M; Ciba J; Turek M; Dydo P
    Environ Technol; 2007 Jan; 28(1):105-13. PubMed ID: 17283954
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A mini review of recent progress in the removal of emerging contaminants from pharmaceutical waste using various adsorbents.
    Ahammad NA; Ahmad MA; Hameed BH; Mohd Din AT
    Environ Sci Pollut Res Int; 2023 Dec; 30(60):124459-124473. PubMed ID: 35314938
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Adsorptive removal of antibiotics from water using magnetic ion exchange resin.
    Wang T; Pan X; Ben W; Wang J; Hou P; Qiang Z
    J Environ Sci (China); 2017 Feb; 52():111-117. PubMed ID: 28254029
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Research on the sustainable efficacy of g-MoS
    Zeng Z; Ye S; Wu H; Xiao R; Zeng G; Liang J; Zhang C; Yu J; Fang Y; Song B
    Sci Total Environ; 2019 Jan; 648():206-217. PubMed ID: 30118936
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Metal-organic frameworks based adsorbents: A review from removal perspective of various environmental contaminants from wastewater.
    Rasheed T; Hassan AA; Bilal M; Hussain T; Rizwan K
    Chemosphere; 2020 Nov; 259():127369. PubMed ID: 32593814
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hydrogel applications for adsorption of contaminants in water and wastewater treatment.
    Van Tran V; Park D; Lee YC
    Environ Sci Pollut Res Int; 2018 Sep; 25(25):24569-24599. PubMed ID: 30008169
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Adsorptive removal of nickel(II) ions from aqueous environment: A review.
    Raval NP; Shah PU; Shah NK
    J Environ Manage; 2016 Sep; 179():1-20. PubMed ID: 27149285
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A critical review of clay-based composites with enhanced adsorption performance for metal and organic pollutants.
    Han H; Rafiq MK; Zhou T; Xu R; Mašek O; Li X
    J Hazard Mater; 2019 May; 369():780-796. PubMed ID: 30851518
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.