BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 26058041)

  • 1. Identification of New Candidate Genes and Chemicals Related to Esophageal Cancer Using a Hybrid Interaction Network of Chemicals and Proteins.
    Gao YF; Yuan F; Liu J; Li LP; He YC; Gao RJ; Cai YD; Jiang Y
    PLoS One; 2015; 10(6):e0129474. PubMed ID: 26058041
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prioritization of candidate disease genes by enlarging the seed set and fusing information of the network topology and gene expression.
    Zhang SW; Shao DD; Zhang SY; Wang YB
    Mol Biosyst; 2014 Jun; 10(6):1400-8. PubMed ID: 24695957
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The use of Gene Ontology terms and KEGG pathways for analysis and prediction of oncogenes.
    Xing Z; Chu C; Chen L; Kong X
    Biochim Biophys Acta; 2016 Nov; 1860(11 Pt B):2725-34. PubMed ID: 26801878
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identifying New Candidate Genes and Chemicals Related to Prostate Cancer Using a Hybrid Network and Shortest Path Approach.
    Yuan F; Zhou Y; Wang M; Yang J; Wu K; Lu C; Kong X; Cai YD
    Comput Math Methods Med; 2015; 2015():462363. PubMed ID: 26504486
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Network-based method for mining novel HPV infection related genes using random walk with restart algorithm.
    Zhu L; Su F; Xu Y; Zou Q
    Biochim Biophys Acta Mol Basis Dis; 2018 Jun; 1864(6 Pt B):2376-2383. PubMed ID: 29197659
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of Important Gene Ontology Terms and Biological Pathways Related to Pancreatic Cancer.
    Yin H; Wang S; Zhang YH; Cai YD; Liu H
    Biomed Res Int; 2016; 2016():7861274. PubMed ID: 27957501
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of genes related to proliferative diabetic retinopathy through RWR algorithm based on protein-protein interaction network.
    Zhang J; Suo Y; Liu M; Xu X
    Biochim Biophys Acta Mol Basis Dis; 2018 Jun; 1864(6 Pt B):2369-2375. PubMed ID: 29237571
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identifying novel fruit-related genes in Arabidopsis thaliana based on the random walk with restart algorithm.
    Zhang Y; Dai L; Liu Y; Zhang Y; Wang S
    PLoS One; 2017; 12(5):e0177017. PubMed ID: 28472169
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A network-based method using a random walk with restart algorithm and screening tests to identify novel genes associated with Menière's disease.
    Li L; Wang Y; An L; Kong X; Huang T
    PLoS One; 2017; 12(8):e0182592. PubMed ID: 28787010
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determination of Genes Related to Uveitis by Utilization of the Random Walk with Restart Algorithm on a Protein-Protein Interaction Network.
    Lu S; Yan Y; Li Z; Chen L; Yang J; Zhang Y; Wang S; Liu L
    Int J Mol Sci; 2017 May; 18(5):. PubMed ID: 28505077
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neighbor-favoring weight reinforcement to improve random walk-based disease gene prioritization.
    Le DH; Kwon YK
    Comput Biol Chem; 2013 Jun; 44():1-8. PubMed ID: 23434623
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of the chemical toxicity effects using the enrichment of Gene Ontology terms and KEGG pathways.
    Chen L; Zhang YH; Zou Q; Chu C; Ji Z
    Biochim Biophys Acta; 2016 Nov; 1860(11 Pt B):2619-26. PubMed ID: 27208425
    [TBL] [Abstract][Full Text] [Related]  

  • 13. GPEC: a Cytoscape plug-in for random walk-based gene prioritization and biomedical evidence collection.
    Le DH; Kwon YK
    Comput Biol Chem; 2012 Apr; 37():17-23. PubMed ID: 22430954
    [TBL] [Abstract][Full Text] [Related]  

  • 14. LYN, a Key Gene From Bioinformatics Analysis, Contributes to Development and Progression of Esophageal Adenocarcinoma.
    Liu D
    Med Sci Monit Basic Res; 2015 Dec; 21():253-61. PubMed ID: 26708841
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mining for novel tumor suppressor genes using a shortest path approach.
    Chen L; Yang J; Huang T; Kong X; Lu L; Cai YD
    J Biomol Struct Dyn; 2016; 34(3):664-75. PubMed ID: 26209080
    [TBL] [Abstract][Full Text] [Related]  

  • 16. HGPEC: a Cytoscape app for prediction of novel disease-gene and disease-disease associations and evidence collection based on a random walk on heterogeneous network.
    Le DH; Pham VH
    BMC Syst Biol; 2017 Jun; 11(1):61. PubMed ID: 28619054
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Global risk transformative prioritization for prostate cancer candidate genes in molecular networks.
    Chen L; Tai J; Zhang L; Shang Y; Li X; Qu X; Li W; Miao Z; Jia X; Wang H; Li W; He W
    Mol Biosyst; 2011 Sep; 7(9):2547-53. PubMed ID: 21735017
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recognizing novel chemicals/drugs for anatomical therapeutic chemical classes with a heat diffusion algorithm.
    Liang H; Hu B; Chen L; Wang S; Aorigele
    Biochim Biophys Acta Mol Basis Dis; 2020 Nov; 1866(11):165910. PubMed ID: 32768680
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Network-based ranking methods for prediction of novel disease associated microRNAs.
    Le DH
    Comput Biol Chem; 2015 Oct; 58():139-48. PubMed ID: 26231308
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The prediction of candidate genes for cervix related cancer through gene ontology and graph theoretical approach.
    Hindumathi V; Kranthi T; Rao SB; Manimaran P
    Mol Biosyst; 2014 Jun; 10(6):1450-60. PubMed ID: 24647578
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.