These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
177 related articles for article (PubMed ID: 26058059)
21. A Segmented Variable-Parameter ZNN for Dynamic Quadratic Minimization With Improved Convergence and Robustness. Xiao L; He Y; Wang Y; Dai J; Wang R; Tang W IEEE Trans Neural Netw Learn Syst; 2023 May; 34(5):2413-2424. PubMed ID: 34464280 [TBL] [Abstract][Full Text] [Related]
22. Discrete-Time Advanced Zeroing Neurodynamic Algorithm Applied to Future Equality-Constrained Nonlinear Optimization With Various Noises. Qiu B; Guo J; Li X; Zhang Z; Zhang Y IEEE Trans Cybern; 2022 May; 52(5):3539-3552. PubMed ID: 32759087 [TBL] [Abstract][Full Text] [Related]
23. Neural-Dynamic Based Synchronous-Optimization Scheme of Dual Redundant Robot Manipulators. Zhang Z; Zhou Q; Fan W Front Neurorobot; 2018; 12():73. PubMed ID: 30467471 [TBL] [Abstract][Full Text] [Related]
24. A Dynamic-Varying Parameter Enhanced ZNN Model for Solving Time-Varying Complex-Valued Tensor Inversion With Its Application to Image Encryption. Xiao L; Li X; Cao P; He Y; Tang W; Li J; Wang Y IEEE Trans Neural Netw Learn Syst; 2024 Oct; 35(10):13681-13690. PubMed ID: 37224356 [TBL] [Abstract][Full Text] [Related]
25. A novel neural dynamical approach to convex quadratic program and its efficient applications. Xia Y; Sun C Neural Netw; 2009 Dec; 22(10):1463-70. PubMed ID: 19410427 [TBL] [Abstract][Full Text] [Related]
26. Design, Analysis, and Representation of Novel Five-Step DTZD Algorithm for Time-Varying Nonlinear Optimization. Guo D; Yan L; Nie Z IEEE Trans Neural Netw Learn Syst; 2018 Sep; 29(9):4248-4260. PubMed ID: 29990090 [TBL] [Abstract][Full Text] [Related]
27. Integration-Enhanced Zhang Neural Network for Real-Time-Varying Matrix Inversion in the Presence of Various Kinds of Noises. Jin L; Zhang Y; Li S IEEE Trans Neural Netw Learn Syst; 2016 Dec; 27(12):2615-2627. PubMed ID: 26625426 [TBL] [Abstract][Full Text] [Related]
28. Two New Discrete-Time Neurodynamic Algorithms Applied to Online Future Matrix Inversion With Nonsingular or Sometimes-Singular Coefficient. Qiu B; Zhang Y IEEE Trans Cybern; 2019 Jun; 49(6):2032-2045. PubMed ID: 29993939 [TBL] [Abstract][Full Text] [Related]
29. General 7-Instant DCZNN Model Solving Future Different-Level System of Nonlinear Inequality and Linear Equation. Yang M; Zhang Y; Hu H; Qiu B IEEE Trans Neural Netw Learn Syst; 2020 Sep; 31(9):3204-3214. PubMed ID: 31567101 [TBL] [Abstract][Full Text] [Related]
30. Nonlinearly Activated Neural Network for Solving Time-Varying Complex Sylvester Equation. Li S; Li Y IEEE Trans Cybern; 2014 Aug; 44(8):1397-1407. PubMed ID: 24184789 [TBL] [Abstract][Full Text] [Related]
31. Predefined-Time Zeroing Neural Networks With Independent Prior Parameter for Solving Time-Varying Plural Lyapunov Tensor Equation. Qi Z; Ning Y; Xiao L; He Y; Luo J; Luo B IEEE Trans Neural Netw Learn Syst; 2024 Jul; 35(7):9408-9416. PubMed ID: 37018606 [TBL] [Abstract][Full Text] [Related]
32. 7-Instant Discrete-Time Synthesis Model Solving Future Different-Level Linear Matrix System via Equivalency of Zeroing Neural Network. Yang M; Zhang Y; Tan N; Mao M; Hu H IEEE Trans Cybern; 2022 Aug; 52(8):8366-8375. PubMed ID: 33544686 [TBL] [Abstract][Full Text] [Related]
33. Two Monthly Continuous Dynamic Model Based on Nash Bargaining Theory for Conflict Resolution in Reservoir System. Homayounfar M; Zomorodian M; Martinez CJ; Lai SH PLoS One; 2015; 10(12):e0143198. PubMed ID: 26641095 [TBL] [Abstract][Full Text] [Related]
34. Harmonic Noise-Tolerant ZNN for Dynamic Matrix Pseudoinversion and Its Application to Robot Manipulator. Liao B; Wang Y; Li J; Guo D; He Y Front Neurorobot; 2022; 16():928636. PubMed ID: 35770275 [TBL] [Abstract][Full Text] [Related]
35. A discrete-time Lagrangian network for solving constrained quadratic programs. Tang WS; Wang J Int J Neural Syst; 2000 Aug; 10(4):261-5. PubMed ID: 11052413 [TBL] [Abstract][Full Text] [Related]
36. A New Projected Active Set Conjugate Gradient Approach for Taylor-Type Model Predictive Control: Application to Lower Limb Rehabilitation Robots With Passive and Active Rehabilitation. Shi T; Tian Y; Sun Z; Zhang B; Pang Z; Yu J; Zhang X Front Neurorobot; 2020; 14():559048. PubMed ID: 33343324 [TBL] [Abstract][Full Text] [Related]
37. Inverse-Free DZNN Models for Solving Time-Dependent Linear System via High-Precision Linear Six-Step Method. Yang M; Zhang Y; Hu H IEEE Trans Neural Netw Learn Syst; 2024 Jun; 35(6):8597-8608. PubMed ID: 37015638 [TBL] [Abstract][Full Text] [Related]
38. Orthotropic active strain models for the numerical simulation of cardiac biomechanics. Rossi S; Ruiz-Baier R; Pavarino LF; Quarteroni A Int J Numer Method Biomed Eng; 2012; 28(6-7):761-88. PubMed ID: 25364850 [TBL] [Abstract][Full Text] [Related]
39. A direct discretization recurrent neurodynamics method for time-variant nonlinear optimization with redundant robot manipulators. Shi Y; Sheng W; Li S; Li B; Sun X; Gerontitis DK Neural Netw; 2023 Jul; 164():428-438. PubMed ID: 37182345 [TBL] [Abstract][Full Text] [Related]
40. A new performance index for the repetitive motion of mobile manipulators. Xiao L; Zhang Y IEEE Trans Cybern; 2014 Feb; 44(2):280-92. PubMed ID: 23757549 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]