BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

57 related articles for article (PubMed ID: 26058144)

  • 21. A citrus abscission agent induces anoxia- and senescence-related gene expression in Arabidopsis.
    Alferez F; Zhong GY; Burns JK
    J Exp Bot; 2007; 58(10):2451-62. PubMed ID: 17556766
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Overexpressing HRS1 confers hypersensitivity to low phosphate-elicited inhibition of primary root growth in Arabidopsis thaliana.
    Liu H; Yang H; Wu C; Feng J; Liu X; Qin H; Wang D
    J Integr Plant Biol; 2009 Apr; 51(4):382-92. PubMed ID: 19341407
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The zinc-finger protein Zat12 plays a central role in reactive oxygen and abiotic stress signaling in Arabidopsis.
    Davletova S; Schlauch K; Coutu J; Mittler R
    Plant Physiol; 2005 Oct; 139(2):847-56. PubMed ID: 16183833
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Functional disruption of the pentatricopeptide protein SLG1 affects mitochondrial RNA editing, plant development, and responses to abiotic stresses in Arabidopsis.
    Yuan H; Liu D
    Plant J; 2012 May; 70(3):432-44. PubMed ID: 22248025
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The expression level of the chromatin-associated HMGB1 protein influences growth, stress tolerance, and transcriptome in Arabidopsis.
    Lildballe DL; Pedersen DS; Kalamajka R; Emmersen J; Houben A; Grasser KD
    J Mol Biol; 2008 Dec; 384(1):9-21. PubMed ID: 18822296
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Imitation Switch chromatin remodeling factors and their interacting RINGLET proteins act together in controlling the plant vegetative phase in Arabidopsis.
    Li G; Zhang J; Li J; Yang Z; Huang H; Xu L
    Plant J; 2012 Oct; 72(2):261-70. PubMed ID: 22694359
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Overexpression of AtLEA3-3 confers resistance to cold stress in Escherichia coli and provides enhanced osmotic stress tolerance and ABA sensitivity in Arabidopsis thaliana.
    Zhao P; Liu F; Ma M; Gong J; Wang Q; Jia P; Zheng G; Liu H
    Mol Biol (Mosk); 2011; 45(5):851-62. PubMed ID: 22393782
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The ethylene response factor AtERF11 that is transcriptionally modulated by the bZIP transcription factor HY5 is a crucial repressor for ethylene biosynthesis in Arabidopsis.
    Li Z; Zhang L; Yu Y; Quan R; Zhang Z; Zhang H; Huang R
    Plant J; 2011 Oct; 68(1):88-99. PubMed ID: 21645149
    [TBL] [Abstract][Full Text] [Related]  

  • 29. TCP3 interacts with R2R3-MYB proteins, promotes flavonoid biosynthesis and negatively regulates the auxin response in Arabidopsis thaliana.
    Li S; Zachgo S
    Plant J; 2013 Dec; 76(6):901-13. PubMed ID: 24118612
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Volatiles of two growth-inhibiting rhizobacteria commonly engage AtWRKY18 function.
    Wenke K; Wanke D; Kilian J; Berendzen K; Harter K; Piechulla B
    Plant J; 2012 May; 70(3):445-59. PubMed ID: 22188129
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Elongation-related functions of LEAFY COTYLEDON1 during the development of Arabidopsis thaliana.
    Junker A; Mönke G; Rutten T; Keilwagen J; Seifert M; Thi TM; Renou JP; Balzergue S; Viehöver P; Hähnel U; Ludwig-Müller J; Altschmied L; Conrad U; Weisshaar B; Bäumlein H
    Plant J; 2012 Aug; 71(3):427-42. PubMed ID: 22429691
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Potential immunosuppressive and antiinflammatory activities of Malaysian medicinal plants characterized by reduced cell surface expression of cell adhesion molecules.
    Tanaka S; Yoichi S; Ao L; Matumoto M; Morimoto K; Akimoto N; Honda G; Tabata M; Oshima T; Masuda T; bin Asmawi MZ; Ismail Z; Yusof SM; Din LB; Said IM
    Phytother Res; 2001 Dec; 15(8):681-6. PubMed ID: 11746860
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cytotoxic and antioxidant compounds from the stem bark of Goniothalamus tapisoides Mat Salleh.
    Kim RP; Bihud V; Bin Mohamad K; Leong KH; Bin Mohamad J; Bin Ahmad F; Hazni H; Kasim N; Halim SN; Awang K
    Molecules; 2012 Dec; 18(1):128-39. PubMed ID: 23344192
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Early transcriptomic response of Arabidopsis thaliana to polymetallic contamination: implications for the identification of potential biomarkers of metal exposure.
    Gómez-Sagasti MT; Barrutia O; Ribas G; Garbisu C; Becerril JM
    Metallomics; 2016 May; 8(5):518-31. PubMed ID: 27118254
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Allyl-isothiocyanate treatment induces a complex transcriptional reprogramming including heat stress, oxidative stress and plant defence responses in Arabidopsis thaliana.
    Kissen R; Øverby A; Winge P; Bones AM
    BMC Genomics; 2016 Sep; 17(1):740. PubMed ID: 27639974
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Emerging anticancer potentials of goniothalamin and its molecular mechanisms.
    Seyed MA; Jantan I; Bukhari SN
    Biomed Res Int; 2014; 2014():536508. PubMed ID: 25247178
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Microarray analysis of Arabidopsis plants in response to allelochemical L-DOPA.
    Golisz A; Sugano M; Hiradate S; Fujii Y
    Planta; 2011 Feb; 233(2):231-40. PubMed ID: 20978802
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Polyamines interfere with protein ubiquitylation and cause depletion of intracellular amino acids: a possible mechanism for cell growth inhibition.
    Sayas E; Pérez-Benavente B; Manzano C; Farràs R; Alejandro S; Del Pozo JC; Ferrando A; Serrano R
    FEBS Lett; 2019 Jan; 593(2):209-218. PubMed ID: 30447065
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Gene expression profiling through microarray analysis in Arabidopsis thaliana colonized by Pseudomonas putida MTCC5279, a plant growth promoting rhizobacterium.
    Srivastava S; Chaudhry V; Mishra A; Chauhan PS; Rehman A; Yadav A; Tuteja N; Nautiyal CS
    Plant Signal Behav; 2012 Feb; 7(2):235-45. PubMed ID: 22353860
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Calcium signatures are decoded by plants to give specific gene responses.
    Whalley HJ; Knight MR
    New Phytol; 2013 Feb; 197(3):690-693. PubMed ID: 23190495
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 3.