BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 26058430)

  • 1. How does the plasmonic enhancement of molecular absorption depend on the energy gap between molecular excitation and plasmon modes: a mixed TDDFT/FDTD investigation.
    Sun J; Li G; Liang W
    Phys Chem Chem Phys; 2015 Jul; 17(26):16835-45. PubMed ID: 26058430
    [TBL] [Abstract][Full Text] [Related]  

  • 2. E-beam deposited Ag-nanoparticles plasmonic organic solar cell and its absorption enhancement analysis using FDTD-based cylindrical nano-particle optical model.
    Kim RS; Zhu J; Park JH; Li L; Yu Z; Shen H; Xue M; Wang KL; Park G; Anderson TJ; Pei Q
    Opt Express; 2012 Jun; 20(12):12649-57. PubMed ID: 22714293
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dual Transient Bleaching of Au/PbS Hybrid Core/Shell Nanoparticles.
    Kobayashi Y; Nonoguchi Y; Wang L; Kawai T; Tamai N
    J Phys Chem Lett; 2012 May; 3(9):1111-6. PubMed ID: 26288045
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A hybrid atomistic electrodynamics-quantum mechanical approach for simulating surface-enhanced Raman scattering.
    Payton JL; Morton SM; Moore JE; Jensen L
    Acc Chem Res; 2014 Jan; 47(1):88-99. PubMed ID: 23965411
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of the dielectric constant of the surrounding medium and the substrate on the surface plasmon resonance spectrum and sensitivity factors of highly symmetric systems: silver nanocubes.
    Mahmoud MA; Chamanzar M; Adibi A; El-Sayed MA
    J Am Chem Soc; 2012 Apr; 134(14):6434-42. PubMed ID: 22420824
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plasmonic couplings in Ag-Au heterodimers.
    Gomrok S; Eldridge BK; Chaffin EA; Barr JW; Huang X; Hoang TB; Wang Y
    J Chem Phys; 2024 Apr; 160(14):. PubMed ID: 38591683
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Broadband absorption enhancement achieved by optical layer mediated plasmonic solar cell.
    Ren W; Zhang G; Wu Y; Ding H; Shen Q; Zhang K; Li J; Pan N; Wang X
    Opt Express; 2011 Dec; 19(27):26536-50. PubMed ID: 22274238
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition.
    Lee KS; El-Sayed MA
    J Phys Chem B; 2006 Oct; 110(39):19220-5. PubMed ID: 17004772
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Collective plasmon modes excited on a silver nanoparticle 2D crystalline sheet.
    Toma M; Toma K; Michioka K; Ikezoe Y; Obara D; Okamoto K; Tamada K
    Phys Chem Chem Phys; 2011 Apr; 13(16):7459-66. PubMed ID: 21423985
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling model.
    Jain PK; Eustis S; El-Sayed MA
    J Phys Chem B; 2006 Sep; 110(37):18243-53. PubMed ID: 16970442
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamical coupling of plasmons and molecular excitations by hybrid quantum/classical calculations: time-domain approach.
    Sakko A; Rossi TP; Nieminen RM
    J Phys Condens Matter; 2014 Aug; 26(31):315013. PubMed ID: 25028486
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasmon-enhanced fluorescence of submonolayer porphyrins by silver-polymer core-shell nanoparticles.
    Niu JX; Pan CD; Liu YT; Lou ST; Wu E; Wu BT; Zhang XL; Jin QY
    Opt Express; 2018 Feb; 26(3):3489-3496. PubMed ID: 29401876
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficiency of Plasmon-Induced Dual-Mode Fluorescence Enhancement upon Two-Photon Excitation.
    Shokova MA; Bochenkov VE
    Nanomaterials (Basel); 2021 Dec; 11(12):. PubMed ID: 34947683
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of Ethanethiolate Spacer on Morphology and Optical Responses of Ag Nanoparticle Array-Single Layer Graphene Hybrid Systems.
    Sutrová V; Šloufová I; Melníková Z; Kalbáč M; Pavlova E; Vlčková B
    Langmuir; 2017 Dec; 33(50):14414-14424. PubMed ID: 29172530
    [TBL] [Abstract][Full Text] [Related]  

  • 15. LSPR properties of metal nanoparticles adsorbed at a liquid-liquid interface.
    Yang Z; Chen S; Fang P; Ren B; Girault HH; Tian Z
    Phys Chem Chem Phys; 2013 Apr; 15(15):5374-8. PubMed ID: 23376970
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extracting Electronic Transition Bands of Adsorbates from Molecule-Plasmon Excitation Coupling.
    Tesema TE; Kookhaee H; Habteyes TG
    J Phys Chem Lett; 2020 May; 11(9):3507-3514. PubMed ID: 32303128
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonlinear features of Fano resonance: a QM/EM study.
    Sun J; Ding Z; Yu Y; Liang W
    Phys Chem Chem Phys; 2021 Aug; 23(30):15994-16004. PubMed ID: 34318831
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrafast chemical interface scattering as an additional decay channel for nascent nonthermal electrons in small metal nanoparticles.
    Bauer C; Abid JP; Fermin D; Girault HH
    J Chem Phys; 2004 May; 120(19):9302-15. PubMed ID: 15267867
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure enhancement factor relationships in single gold nanoantennas by surface-enhanced Raman excitation spectroscopy.
    Kleinman SL; Sharma B; Blaber MG; Henry AI; Valley N; Freeman RG; Natan MJ; Schatz GC; Van Duyne RP
    J Am Chem Soc; 2013 Jan; 135(1):301-8. PubMed ID: 23214430
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasmon-enhanced high order harmonic generation of open-ended finite-sized carbon nanotubes: The effects of incident field's intensity and frequency and the interference between the incident and scattered fields.
    Sun J; Ding Z; Yu Y; Liang W
    J Chem Phys; 2020 Jun; 152(22):224708. PubMed ID: 32534528
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.