These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 26058430)

  • 41. Novel architecture of plasmon excitation based on self-assembled nanoparticle arrays for photovoltaics.
    Jo H; Sohn A; Shin KS; Kumar B; Kim JH; Kim DW; Kim SW
    ACS Appl Mater Interfaces; 2014 Jan; 6(2):1030-5. PubMed ID: 24328244
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Plasmon-coupled resonance energy transfer: A real-time electrodynamics approach.
    Ding W; Hsu LY; Schatz GC
    J Chem Phys; 2017 Feb; 146(6):064109. PubMed ID: 28201896
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Plasmon transmission through excitonic subwavelength gaps.
    Sukharev M; Nitzan A
    J Chem Phys; 2016 Apr; 144(14):144703. PubMed ID: 27083741
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Plasmonic band gap engineering of plasmon-exciton coupling.
    Karademir E; Balci S; Kocabas C; Aydinli A
    Opt Lett; 2014 Oct; 39(19):5697-700. PubMed ID: 25360962
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Plasmon resonance enhanced optical absorption in inverted polymer/fullerene solar cells with metal nanoparticle-doped solution-processable TiO2 layer.
    Xu MF; Zhu XZ; Shi XB; Liang J; Jin Y; Wang ZK; Liao LS
    ACS Appl Mater Interfaces; 2013 Apr; 5(8):2935-42. PubMed ID: 23510437
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Improvement of polypyrrole nanowire devices by plasmonic space charge generation: high photocurrent and wide spectral response by Ag nanoparticle decoration.
    Lee SH; Bae J; Lee SW; Jang JW
    Nanoscale; 2015 Nov; 7(41):17328-37. PubMed ID: 26413791
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Evaluation of electromagnetic enhancement of surface enhanced hyper Raman scattering using plasmonic properties of binary active sites in single Ag nanoaggregates.
    Itoh T; Yoshikawa H; Yoshida K; Biju V; Ishikawa M
    J Chem Phys; 2009 Jun; 130(21):214706. PubMed ID: 19508086
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Plasmon resonances of Ag capped Si nanopillars fabricated using mask-less lithography.
    Wu K; Rindzevicius T; Schmidt MS; Mogensen KB; Xiao S; Boisen A
    Opt Express; 2015 May; 23(10):12965-78. PubMed ID: 26074549
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Electron-Beam-Induced Molecular Plasmon Excitation and Energy Transfer in Silver Molecular Nanowires.
    Yu T; Lingerfelt D; Jakowski J; Jabed MA; Ganesh P; Sumpter BG
    J Phys Chem A; 2021 Jan; 125(1):74-87. PubMed ID: 33389995
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine.
    Jain PK; Huang X; El-Sayed IH; El-Sayed MA
    Acc Chem Res; 2008 Dec; 41(12):1578-86. PubMed ID: 18447366
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Bottom-up design of hybrid polymer nanoassemblies elucidates plasmon-enhanced second harmonic generation from nonlinear optical dyes.
    Ishifuji M; Mitsuishi M; Miyashita T
    J Am Chem Soc; 2009 Apr; 131(12):4418-24. PubMed ID: 19275159
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Self-doping and surface plasmon modification induced visible light photocatalysis of BiOCl.
    Jiang J; Zhang L; Li H; He W; Yin JJ
    Nanoscale; 2013 Nov; 5(21):10573-81. PubMed ID: 24056871
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Synthetically directed self-assembly and enhanced surface-enhanced Raman scattering property of twinned crystalline Ag/Ag homojunction nanoparticles.
    Feng X; Ruan F; Hong R; Ye J; Hu J; Hu G; Yang Z
    Langmuir; 2011 Mar; 27(6):2204-10. PubMed ID: 21323368
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Determination of the absorption and radiative decay rates of dark and bright plasmonic modes.
    Cao ZL; Ong HC
    Opt Express; 2014 Jun; 22(13):16112-29. PubMed ID: 24977864
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Enhancing the UV Emission in ZnO-CNT Hybrid Nanostructures via the Surface Plasmon Resonance of Ag Nanoparticles.
    Rauwel P; Galeckas A; Rauwel E
    Nanomaterials (Basel); 2021 Feb; 11(2):. PubMed ID: 33579049
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Toward an Enhancement of the Photoactivity of Multiphotochromic Dimers Using Plasmon Resonance: A Theoretical Study.
    Fihey A; Le Guennic B; Jacquemin D
    J Phys Chem Lett; 2015 Aug; 6(15):3067-73. PubMed ID: 26267018
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Single-molecule Raman spectroscopy: a probe of surface dynamics and plasmonic fields.
    Haran G
    Acc Chem Res; 2010 Aug; 43(8):1135-43. PubMed ID: 20521801
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Optical absorption enhancement of hybrid-plasmonic-based metal-semiconductor-metal photodetector incorporating metal nanogratings and embedded metal nanoparticles.
    Tan CL; Karar A; Alameh K; Lee YT
    Opt Express; 2013 Jan; 21(2):1713-25. PubMed ID: 23389156
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Combined quantum mechanics (TDDFT) and classical electrodynamics (Mie theory) methods for calculating surface enhanced Raman and hyper-Raman spectra.
    Mullin J; Valley N; Blaber MG; Schatz GC
    J Phys Chem A; 2012 Sep; 116(38):9574-81. PubMed ID: 22946645
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Substrate effect on the plasmonic sensing ability of hollow nanoparticles of different shapes.
    Mahmoud MA; El-Sayed MA
    J Phys Chem B; 2013 Apr; 117(16):4468-77. PubMed ID: 23075165
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.