BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 26058442)

  • 1. Conversion Equation between the Drop Height in the New York University Impactor and the Impact Force in the Infinite Horizon Impactor in the Contusion Spinal Cord Injury Model.
    Khuyagbaatar B; Kim K; Kim YH
    J Neurotrauma; 2015 Dec; 32(24):1987-93. PubMed ID: 26058442
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of equivalent parameters of two spinal cord injury devices: the New York University impactor versus the Infinite Horizon impactor.
    Park JH; Kim JH; Oh SK; Baek SR; Min J; Kim YW; Kim ST; Woo CW; Jeon SR
    Spine J; 2016 Nov; 16(11):1392-1403. PubMed ID: 27349631
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Finite element analysis of spinal cord injury in the rat.
    Maikos JT; Qian Z; Metaxas D; Shreiber DI
    J Neurotrauma; 2008 Jul; 25(7):795-816. PubMed ID: 18627257
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Maximum principal strain correlates with spinal cord tissue damage in contusion and dislocation injuries in the rat cervical spine.
    Russell CM; Choo AM; Tetzlaff W; Chung TE; Oxland TR
    J Neurotrauma; 2012 May; 29(8):1574-85. PubMed ID: 22320127
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomechanical Behaviors in Three Types of Spinal Cord Injury Mechanisms.
    Khuyagbaatar B; Kim K; Man Park W; Hyuk Kim Y
    J Biomech Eng; 2016 Aug; 138(8):. PubMed ID: 27276391
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Biomechanical behaviors of cervical spinal cord injury related to various bone fragment impact velocities: a finite element study].
    Duan S; Zhu ZQ; Wang KF; Liu CJ; Xu S; Xia WW; Liu HY
    Zhonghua Yi Xue Za Zhi; 2018 Mar; 98(11):837-841. PubMed ID: 29609266
    [No Abstract]   [Full Text] [Related]  

  • 7. Histological effects of residual compression sustained for 60 minutes at different depths in a novel rat spinal cord injury contusion model.
    Sjovold SG; Mattucci SF; Choo AM; Liu J; Dvorak MF; Kwon BK; Tetzlaff W; Oxland TR
    J Neurotrauma; 2013 Aug; 30(15):1374-84. PubMed ID: 23731342
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Behavioral, histological, and ex vivo magnetic resonance imaging assessment of graded contusion spinal cord injury in mice.
    Nishi RA; Liu H; Chu Y; Hamamura M; Su MY; Nalcioglu O; Anderson AJ
    J Neurotrauma; 2007 Apr; 24(4):674-89. PubMed ID: 17439350
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Traumatic spinal cord injury produced by controlled contusion in mouse.
    Jakeman LB; Guan Z; Wei P; Ponnappan R; Dzwonczyk R; Popovich PG; Stokes BT
    J Neurotrauma; 2000 Apr; 17(4):299-319. PubMed ID: 10776914
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Creatine diet supplement for spinal cord injury: influences on functional recovery and tissue sparing in rats.
    Rabchevsky AG; Sullivan PG; Fugaccia I; Scheff SW
    J Neurotrauma; 2003 Jul; 20(7):659-69. PubMed ID: 12908927
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tissue displacement and impact force are important contributors to outcome after spinal cord contusion injury.
    Ghasemlou N; Kerr BJ; David S
    Exp Neurol; 2005 Nov; 196(1):9-17. PubMed ID: 16023101
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical Design and Analysis of a Unilateral Cervical Spinal Cord Contusion Injury Model in Non-Human Primates.
    Sparrey CJ; Salegio EA; Camisa W; Tam H; Beattie MS; Bresnahan JC
    J Neurotrauma; 2016 Jun; 33(12):1136-49. PubMed ID: 26670940
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The distribution of tissue damage in the spinal cord is influenced by the contusion velocity.
    Sparrey CJ; Choo AM; Liu J; Tetzlaff W; Oxland TR
    Spine (Phila Pa 1976); 2008 Oct; 33(22):E812-9. PubMed ID: 18923304
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a large-animal model to measure dynamic cerebrospinal fluid pressure during spinal cord injury: Laboratory investigation.
    Jones CF; Lee JH; Kwon BK; Cripton PA
    J Neurosurg Spine; 2012 Jun; 16(6):624-35. PubMed ID: 22519927
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Behavioral and anatomical consequences of repetitive mild thoracic spinal cord contusion injury in the rat.
    Jin Y; Bouyer J; Haas C; Fischer I
    Exp Neurol; 2014 Jul; 257():57-69. PubMed ID: 24786492
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Animals models of spinal cord contusion injury.
    Verma R; Virdi JK; Singh N; Jaggi AS
    Korean J Pain; 2019 Jan; 32(1):12-21. PubMed ID: 30671199
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neuroprotective effects of basic fibroblast growth factor following spinal cord contusion injury in the rat.
    Lee TT; Green BA; Dietrich WD; Yezierski RP
    J Neurotrauma; 1999 May; 16(5):347-56. PubMed ID: 10369555
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental models of partial lesion of rat spinal cord to investigate neurodegeneration, glial activation, and behavior impairments.
    Chadi G; Andrade MS; Leme RJ; Gomide VC
    Int J Neurosci; 2001; 111(3-4):137-65. PubMed ID: 11912671
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An experimental spinal cord injury rat model using customized impact device: A cost-effective approach.
    Vijayaprakash KM; Sridharan N
    J Pharmacol Pharmacother; 2013 Jul; 4(3):211-3. PubMed ID: 23960429
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Histopathological and behavioral characterization of a novel cervical spinal cord displacement contusion injury in the rat.
    Pearse DD; Lo TP; Cho KS; Lynch MP; Garg MS; Marcillo AE; Sanchez AR; Cruz Y; Dietrich WD
    J Neurotrauma; 2005 Jun; 22(6):680-702. PubMed ID: 15941377
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.