These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 26058510)

  • 1. Gold Nanohole Array with Sub-1 nm Roughness by Annealing for Sensitivity Enhancement of Extraordinary Optical Transmission Biosensor.
    Zhang J; Irannejad M; Yavuz M; Cui B
    Nanoscale Res Lett; 2015 Dec; 10(1):944. PubMed ID: 26058510
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Large-Area Fabrication of Complex Nanohole Arrays with Highly Tunable Plasmonic Properties.
    Wang Y; Chong HB; Zhang Z; Zhao Y
    ACS Appl Mater Interfaces; 2020 Aug; 12(33):37435-37443. PubMed ID: 32698576
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced extraordinary optical transmission and refractive-index sensing sensitivity in tapered plasmonic nanohole arrays.
    Chen Z; Li P; Zhang S; Chen Y; Liu P; Duan H
    Nanotechnology; 2019 Aug; 30(33):335201. PubMed ID: 31013483
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-throughput nanohole array based system to monitor multiple binding events in real time.
    Ji J; O'Connell JG; Carter DJ; Larson DN
    Anal Chem; 2008 Apr; 80(7):2491-8. PubMed ID: 18307360
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transferrable Plasmonic Au Thin Film Containing Sub-20 nm Nanohole Array Constructed via High-Resolution Polymer Self-Assembly and Nanotransfer Printing.
    Yim S; Jeon S; Kim JM; Baek KM; Lee GH; Kim H; Shin J; Jung YS
    ACS Appl Mater Interfaces; 2018 Jan; 10(3):2216-2223. PubMed ID: 29304281
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced extraordinary optical transmission (EOT) through arrays of bridged nanohole pairs and their sensing applications.
    Yue W; Wang Z; Yang Y; Li J; Wu Y; Chen L; Ooi B; Wang X; Zhang XX
    Nanoscale; 2014 Jul; 6(14):7917-23. PubMed ID: 24898441
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Graphene-enhanced plasmonic nanohole arrays for environmental sensing in aqueous samples.
    Genslein C; Hausler P; Kirchner EM; Bierl R; Baeumner AJ; Hirsch T
    Beilstein J Nanotechnol; 2016; 7():1564-1573. PubMed ID: 28144507
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dielectrophoretic trapping of nanosized biomolecules on plasmonic nanohole arrays for biosensor applications: simple fabrication and visible-region detection.
    Fujiwara S; Hata M; Onohara I; Kawasaki D; Sueyoshi K; Hisamoto H; Suzuki M; Yasukawa T; Endo T
    RSC Adv; 2023 Jul; 13(31):21118-21126. PubMed ID: 37449027
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The extraordinary optical transmission and sensing properties of Ag/Ti composite nanohole arrays.
    Larson S; Carlson D; Ai B; Zhao Y
    Phys Chem Chem Phys; 2019 Feb; 21(7):3771-3780. PubMed ID: 30706926
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plasmonic Bragg reflectors for enhanced extraordinary optical transmission through nano-hole arrays in a gold film.
    Gordon R; Marthandam P
    Opt Express; 2007 Oct; 15(20):12995-3002. PubMed ID: 19550569
    [TBL] [Abstract][Full Text] [Related]  

  • 11. EOT or Kretschmann configuration? Comparative study of the plasmonic modes in gold nanohole arrays.
    Couture M; Live LS; Dhawan A; Masson JF
    Analyst; 2012 Sep; 137(18):4162-70. PubMed ID: 22832550
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasmonic Sensing on Symmetric Nanohole Arrays Supporting High-Q Hybrid Modes and Reflection Geometry.
    Vala M; Ertsgaard CT; Wittenberg NJ; Oh SH
    ACS Sens; 2019 Dec; 4(12):3265-3274. PubMed ID: 31762262
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface plasmon resonance sensing properties of a 3D nanostructure consisting of aligned nanohole and nanocone arrays.
    Najiminaini M; Ertorer E; Kaminska B; Mittler S; Carson JJ
    Analyst; 2014 Apr; 139(8):1876-82. PubMed ID: 24527489
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transmissive structural color filters using vertically coupled aluminum nanohole/nanodisk array with a triangular-lattice.
    Dai P; Wang Y; Zhu X; Shi H; Chen Y; Zhang S; Yang W; Chen Z; Xiao S; Duan H
    Nanotechnology; 2018 Sep; 29(39):395202. PubMed ID: 29972380
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced infrared transmission through gold nanoslit arrays via surface plasmons in continuous graphene.
    Liu Z; Aydin K
    Opt Express; 2016 Nov; 24(24):27882-27889. PubMed ID: 27906356
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of metal crystallinity-related morphologies on the sensing performance of plasmonic nanohole arrays.
    Khan MA; Zhu Y; Yao Y; Zhang P; Agrawal A; Reece PJ
    Nanoscale; 2020 Apr; 12(14):7577-7585. PubMed ID: 32073105
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dual-channel extraordinary ultraviolet transmission through an aluminum nanohole array.
    Hu J; Shen M; Li Z; Li X; Liu G; Wang X; Kan C; Li Y
    Nanotechnology; 2017 May; 28(21):215205. PubMed ID: 28358302
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Large-Scale Plasmonic Hybrid Framework with Built-In Nanohole Array as Multifunctional Optical Sensing Platforms.
    Wang X; Ma X; Shi E; Lu P; Dou L; Zhang X; Wang H
    Small; 2020 Mar; 16(11):e1906459. PubMed ID: 32072751
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transition from discrete patches to plasmonic nanohole array by glancing angle deposition on nanosphere monolayers.
    Bradley L; Ye D; Luong HM; Zhao Y
    Nanotechnology; 2020 May; 31(20):205301. PubMed ID: 31995523
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fiber Optic Sensor of Ammonia Gas Using Plasmonic Extraordinary Optical Transmission.
    Kalvoda L; Jakoubková J; Burda M; Kwiecien P; Richter I; Kopeček J
    Sensors (Basel); 2023 Apr; 23(8):. PubMed ID: 37112406
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.