BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 26058704)

  • 1. Species sensitivity weighted distribution for ecological risk assessment of engineered nanomaterials: the n-TiO2 case study.
    Semenzin E; Lanzellotto E; Hristozov D; Critto A; Zabeo A; Giubilato E; Marcomini A
    Environ Toxicol Chem; 2015 Nov; 34(11):2644-59. PubMed ID: 26058704
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of species sensitivity distribution modeling approaches for environmental risk assessment of nanomaterials - A case study for silver and titanium dioxide representative materials.
    Sørensen SN; Wigger H; Zabeo A; Semenzin E; Hristozov D; Nowack B; Spurgeon DJ; Baun A
    Aquat Toxicol; 2020 Aug; 225():105543. PubMed ID: 32585540
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Risk assessment strategies for nanoscale and fine-sized titanium dioxide particles: Recognizing hazard and exposure issues.
    Warheit DB; Donner EM
    Food Chem Toxicol; 2015 Nov; 85():138-47. PubMed ID: 26362081
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In situ effects of titanium dioxide nanoparticles on community structure of freshwater benthic macroinvertebrates.
    Jovanović B; Milošević D; Piperac MS; Savić A
    Environ Pollut; 2016 Jun; 213():278-282. PubMed ID: 26924756
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ecotoxicity of engineered TiO2 nanoparticles to saltwater organisms: an overview.
    Minetto D; Libralato G; Volpi Ghirardini A
    Environ Int; 2014 May; 66():18-27. PubMed ID: 24509165
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Common freshwater bacteria vary in their responses to short-term exposure to nano-TiO2.
    Binh CT; Tong T; Gaillard JF; Gray KA; Kelly JJ
    Environ Toxicol Chem; 2014 Feb; 33(2):317-27. PubMed ID: 24352762
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Applying adverse outcome pathways and species sensitivity-weighted distribution to predicted-no-effect concentration derivation and quantitative ecological risk assessment for bisphenol A and 4-nonylphenol in aquatic environments: A case study on Tianjin City, China.
    Wang Y; Na G; Zong H; Ma X; Yang X; Mu J; Wang L; Lin Z; Zhang Z; Wang J; Zhao J
    Environ Toxicol Chem; 2018 Feb; 37(2):551-562. PubMed ID: 28984376
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Developing species sensitivity distributions for metallic nanomaterials considering the characteristics of nanomaterials, experimental conditions, and different types of endpoints.
    Chen G; Peijnenburg WJGM; Xiao Y; Vijver MG
    Food Chem Toxicol; 2018 Feb; 112():563-570. PubMed ID: 28390859
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Material-specific properties applied to an environmental risk assessment of engineered nanomaterials - implications on grouping and read-across concepts.
    Wigger H; Nowack B
    Nanotoxicology; 2019 Jun; 13(5):623-643. PubMed ID: 30727799
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of data manipulation and statistical methods on species sensitivity distributions.
    Duboudin C; Ciffroy P; Magaud H
    Environ Toxicol Chem; 2004 Feb; 23(2):489-99. PubMed ID: 14982398
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Form-Specific and Probabilistic Environmental Risk Assessment of 3 Engineered Nanomaterials (Nano-Ag, Nano-TiO
    Hong H; Adam V; Nowack B
    Environ Toxicol Chem; 2021 Sep; 40(9):2629-2639. PubMed ID: 34171135
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Accumulation and Biotransformation in Typical Freshwater Algae Species Influenced by Titanium Dioxide Nanoparticles Under Long-term Exposure].
    Li JL; Wang ZH; Yan YM; Huang B; Luo ZX
    Huan Jing Ke Xue; 2017 Feb; 38(2):832-836. PubMed ID: 29964544
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The potential health challenges of TiO2 nanomaterials.
    Sha B; Gao W; Cui X; Wang L; Xu F
    J Appl Toxicol; 2015 Oct; 35(10):1086-101. PubMed ID: 26179748
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The relative sensitivity of freshwater species to antimony(III): Implications for water quality guidelines and ecological risk assessments.
    Obiakor MO; Tighe M; Wang Z; Ezeonyejiaku CD; Pereg L; Wilson SC
    Environ Sci Pollut Res Int; 2017 Nov; 24(32):25276-25290. PubMed ID: 28929352
    [TBL] [Abstract][Full Text] [Related]  

  • 15. How to measure hazards/risks following exposures to nanoscale or pigment-grade titanium dioxide particles.
    Warheit DB
    Toxicol Lett; 2013 Jul; 220(2):193-204. PubMed ID: 23603385
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nano-titanium dioxide bioreactivity with human alveolar type-I-like epithelial cells: Investigating crystalline phase as a critical determinant.
    Sweeney S; Berhanu D; Ruenraroengsak P; Thorley AJ; Valsami-Jones E; Tetley TD
    Nanotoxicology; 2015 May; 9(4):482-92. PubMed ID: 25137294
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Titanium dioxide nanoparticles enhance inorganic arsenic bioavailability and methylation in two freshwater algae species.
    Luo Z; Wang Z; Yan Y; Li J; Yan C; Xing B
    Environ Pollut; 2018 Jul; 238():631-637. PubMed ID: 29614472
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of food-grade titanium dioxide: the presence of nanosized particles.
    Yang Y; Doudrick K; Bi X; Hristovski K; Herckes P; Westerhoff P; Kaegi R
    Environ Sci Technol; 2014 Jun; 48(11):6391-400. PubMed ID: 24754874
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ecotoxicity of nanosized TiO2. Review of in vivo data.
    Menard A; Drobne D; Jemec A
    Environ Pollut; 2011 Mar; 159(3):677-84. PubMed ID: 21186069
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using physiologically based pharmacokinetic (PBPK) modeling for dietary risk assessment of titanium dioxide (TiO2) nanoparticles.
    Bachler G; von Goetz N; Hungerbuhler K
    Nanotoxicology; 2015 May; 9(3):373-80. PubMed ID: 25058655
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.