These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 26058705)
41. Complete nitrogen removal from municipal wastewater via partial nitrification by appropriately alternating anoxic/aerobic conditions in a continuous plug-flow step feed process. Ge S; Peng Y; Qiu S; Zhu A; Ren N Water Res; 2014 May; 55():95-105. PubMed ID: 24602864 [TBL] [Abstract][Full Text] [Related]
42. Intermittent Aeration Suppresses Nitrite-Oxidizing Bacteria in Membrane-Aerated Biofilms: A Model-Based Explanation. Ma Y; Domingo-Félez C; Plósz BG; Smets BF Environ Sci Technol; 2017 Jun; 51(11):6146-6155. PubMed ID: 28448139 [TBL] [Abstract][Full Text] [Related]
43. Improving oxygen dissolution and distribution in a bioreactor with enhanced simultaneous COD and nitrogen removal by simply introducing micro-pressure and swirl. Bian D; Zhou D; Huo M; Ren Q; Tian X; Wan L; Zhu S; Ai S Appl Microbiol Biotechnol; 2015 Oct; 99(20):8741-9. PubMed ID: 26066842 [TBL] [Abstract][Full Text] [Related]
44. Total and stable washout of nitrite oxidizing bacteria from a nitrifying continuous activated sludge system using automatic control based on Oxygen Uptake Rate measurements. Jubany I; Lafuente J; Baeza JA; Carrera J Water Res; 2009 Jun; 43(11):2761-72. PubMed ID: 19371923 [TBL] [Abstract][Full Text] [Related]
45. [Effect of Aeration Rate on Shortcut Nitrification Recovery in Intermittent Aeration Mode]. Liu H; Nan YB; Li H; Wang X; Peng YZ; Chen YZ Huan Jing Ke Xue; 2018 Feb; 39(2):865-871. PubMed ID: 29964852 [TBL] [Abstract][Full Text] [Related]
46. Simultaneous carbon, nitrogen and phosphorous removal from municipal wastewater in a circulating fluidized bed bioreactor. Patel A; Zhu J; Nakhla G Chemosphere; 2006 Nov; 65(7):1103-12. PubMed ID: 16762392 [TBL] [Abstract][Full Text] [Related]
47. [Analysis of on-line control strategies of aeration flow rate for aerobic-anoxic biological nitrogen removal process]. Ma Y; Peng YZ; Wang SY Huan Jing Ke Xue; 2008 Sep; 29(9):2501-6. PubMed ID: 19068633 [TBL] [Abstract][Full Text] [Related]
48. Alkalinity and dissolved oxygen as controlling parameters for ammonia removal through partial nitritation and ANAMMOX in a single-stage bioreactor. Bagchi S; Biswas R; Nandy T J Ind Microbiol Biotechnol; 2010 Aug; 37(8):871-6. PubMed ID: 20544258 [TBL] [Abstract][Full Text] [Related]
49. Using a zeolite medium biofilter to remove organic pollutant and ammonia simultaneously. Tian WH; Wen XH; Qian Y J Environ Sci (China); 2004; 16(1):90-3. PubMed ID: 14971459 [TBL] [Abstract][Full Text] [Related]
50. Short-term effect of ammonia concentration and salinity on activity of ammonia oxidizing bacteria. Claros J; Jiménez E; Borrás L; Aguado D; Seco A; Ferrer J; Serralta J Water Sci Technol; 2010; 61(12):3008-16. PubMed ID: 20555196 [TBL] [Abstract][Full Text] [Related]
51. Impact of carbon to nitrogen ratio and aeration regime on mainstream deammonification. Han M; De Clippeleir H; Al-Omari A; Wett B; Vlaeminck SE; Bott C; Murthy S Water Sci Technol; 2016; 74(2):375-84. PubMed ID: 27438242 [TBL] [Abstract][Full Text] [Related]
52. Impact of hydraulic retention time on organic and nutrient removal in a membrane coupled sequencing batch reactor. Xu S; Wu D; Hu Z Water Res; 2014 May; 55():12-20. PubMed ID: 24583839 [TBL] [Abstract][Full Text] [Related]
53. Combined nitritation-anammox: advances in understanding process stability. Joss A; Derlon N; Cyprien C; Burger S; Szivak I; Traber J; Siegrist H; Morgenroth E Environ Sci Technol; 2011 Nov; 45(22):9735-42. PubMed ID: 21981764 [TBL] [Abstract][Full Text] [Related]
54. Modeling and simulation of oxygen-limited partial nitritation in a membrane-assisted bioreactor (MBR). Wyffels S; Van Hulle SW; Boeckx P; Volcke EI; Van Cleemput O; Vanrolleghem PA; Verstraete W Biotechnol Bioeng; 2004 Jun; 86(5):531-42. PubMed ID: 15129436 [TBL] [Abstract][Full Text] [Related]
55. Influence of operational parameters on nitrogen removal efficiency and microbial communities in a full-scale activated sludge process. Kim YM; Cho HU; Lee DS; Park D; Park JM Water Res; 2011 Nov; 45(17):5785-95. PubMed ID: 21924454 [TBL] [Abstract][Full Text] [Related]
56. Controlling nitrogen removal using redox and ammonium sensors. Cecil D Water Sci Technol; 2003; 47(11):109-14. PubMed ID: 12906278 [TBL] [Abstract][Full Text] [Related]
57. An evaluation of the performance and optimization of a new wastewater treatment technology: the air suction flow-biofilm reactor. Forde P; Kennelly C; Gerrity S; Collins G; Clifford E Environ Technol; 2015; 36(9-12):1188-204. PubMed ID: 25413003 [TBL] [Abstract][Full Text] [Related]
58. Nitrogen fixation in the activated sludge treatment of thermomechanical pulping wastewater: effect of dissolved oxygen. Slade AH; Anderson SM; Evans BG Water Sci Technol; 2003; 48(8):1-8. PubMed ID: 14682564 [TBL] [Abstract][Full Text] [Related]
59. High levels of nitrifying bacteria in intermittently aerated reactors treating high ammonia wastewater. Mota C; Ridenoure J; Cheng J; de Los Reyes FL FEMS Microbiol Ecol; 2005 Nov; 54(3):391-400. PubMed ID: 16332337 [TBL] [Abstract][Full Text] [Related]
60. Efficient and stable nitritation and denitritation of ammonium-rich sludge dewatering liquor using an SBR with continuous loading. Fux C; Velten S; Carozzi V; Solley D; Keller J Water Res; 2006 Aug; 40(14):2765-75. PubMed ID: 16815527 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]