These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
714 related articles for article (PubMed ID: 26058897)
41. The emerging role of redox-sensitive Nrf2-Keap1 pathway in diabetes. Bhakkiyalakshmi E; Sireesh D; Rajaguru P; Paulmurugan R; Ramkumar KM Pharmacol Res; 2015 Jan; 91():104-14. PubMed ID: 25447793 [TBL] [Abstract][Full Text] [Related]
42. Acetyl-l-carnitine prevents homocysteine-induced suppression of Nrf2/Keap1 mediated antioxidation in human lens epithelial cells. Yang SP; Yang XZ; Cao GP Mol Med Rep; 2015 Jul; 12(1):1145-50. PubMed ID: 25776802 [TBL] [Abstract][Full Text] [Related]
43. Crystal structure and catalysis of the selenoprotein thioredoxin reductase 1. Cheng Q; Sandalova T; Lindqvist Y; Arnér ES J Biol Chem; 2009 Feb; 284(6):3998-4008. PubMed ID: 19054767 [TBL] [Abstract][Full Text] [Related]
44. Piceatannol induces heme oxygenase-1 expression in human mammary epithelial cells through activation of ARE-driven Nrf2 signaling. Lee HH; Park SA; Almazari I; Kim EH; Na HK; Surh YJ Arch Biochem Biophys; 2010 Sep; 501(1):142-50. PubMed ID: 20558128 [TBL] [Abstract][Full Text] [Related]
45. The keap1-nrf2 cellular defense pathway: mechanisms of regulation and role in protection against drug-induced toxicity. Copple IM; Goldring CE; Kitteringham NR; Park BK Handb Exp Pharmacol; 2010; (196):233-66. PubMed ID: 20020265 [TBL] [Abstract][Full Text] [Related]
46. The Keap1/Nrf2 pathway in health and disease: from the bench to the clinic. O'Connell MA; Hayes JD Biochem Soc Trans; 2015 Aug; 43(4):687-9. PubMed ID: 26551713 [TBL] [Abstract][Full Text] [Related]
47. KEAP1 is a redox sensitive target that arbitrates the opposing radiosensitive effects of parthenolide in normal and cancer cells. Xu Y; Fang F; Miriyala S; Crooks PA; Oberley TD; Chaiswing L; Noel T; Holley AK; Zhao Y; Kiningham KK; Clair DK; Clair WH Cancer Res; 2013 Jul; 73(14):4406-17. PubMed ID: 23674500 [TBL] [Abstract][Full Text] [Related]
48. Acrolein-induced activation of mitogen-activated protein kinase signaling is mediated by alkylation of thioredoxin reductase and thioredoxin 1. Randall MJ; Spiess PC; Hristova M; Hondal RJ; van der Vliet A Redox Biol; 2013; 1(1):265-75. PubMed ID: 24024160 [TBL] [Abstract][Full Text] [Related]
49. Review of molecular mechanisms involved in the activation of the Nrf2-ARE signaling pathway by chemopreventive agents. Giudice A; Arra C; Turco MC Methods Mol Biol; 2010; 647():37-74. PubMed ID: 20694660 [TBL] [Abstract][Full Text] [Related]
51. The role of the Nrf2/Keap1 pathway in obesity and metabolic syndrome. Zhang Z; Zhou S; Jiang X; Wang YH; Li F; Wang YG; Zheng Y; Cai L Rev Endocr Metab Disord; 2015 Mar; 16(1):35-45. PubMed ID: 25540093 [TBL] [Abstract][Full Text] [Related]
53. Role of the Keap1-Nrf2 pathway in cancer. Leinonen HM; Kansanen E; Pölönen P; Heinäniemi M; Levonen AL Adv Cancer Res; 2014; 122():281-320. PubMed ID: 24974185 [TBL] [Abstract][Full Text] [Related]
54. NRF2 and KEAP1 mutations: permanent activation of an adaptive response in cancer. Hayes JD; McMahon M Trends Biochem Sci; 2009 Apr; 34(4):176-88. PubMed ID: 19321346 [TBL] [Abstract][Full Text] [Related]
55. The role of the catecholic and the electrophilic moieties of caffeic acid in Nrf2/Keap1 pathway activation in ovarian carcinoma cell lines. Sirota R; Gibson D; Kohen R Redox Biol; 2015; 4():48-59. PubMed ID: 25498967 [TBL] [Abstract][Full Text] [Related]
56. Toward clinical application of the Keap1-Nrf2 pathway. Suzuki T; Motohashi H; Yamamoto M Trends Pharmacol Sci; 2013 Jun; 34(6):340-6. PubMed ID: 23664668 [TBL] [Abstract][Full Text] [Related]
58. Molecular mechanisms for the regulation of Nrf2-mediated cell proliferation in non-small-cell lung cancers. Yamadori T; Ishii Y; Homma S; Morishima Y; Kurishima K; Itoh K; Yamamoto M; Minami Y; Noguchi M; Hizawa N Oncogene; 2012 Nov; 31(45):4768-77. PubMed ID: 22249257 [TBL] [Abstract][Full Text] [Related]
59. A generalizable platform for interrogating target- and signal-specific consequences of electrophilic modifications in redox-dependent cell signaling. Lin HY; Haegele JA; Disare MT; Lin Q; Aye Y J Am Chem Soc; 2015 May; 137(19):6232-44. PubMed ID: 25909755 [TBL] [Abstract][Full Text] [Related]