BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 26058944)

  • 1. TargetFreeze: Identifying Antifreeze Proteins via a Combination of Weights using Sequence Evolutionary Information and Pseudo Amino Acid Composition.
    He X; Han K; Hu J; Yan H; Yang JY; Shen HB; Yu DJ
    J Membr Biol; 2015 Dec; 248(6):1005-14. PubMed ID: 26058944
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using support vector machine and evolutionary profiles to predict antifreeze protein sequences.
    Zhao X; Ma Z; Yin M
    Int J Mol Sci; 2012; 13(2):2196-2207. PubMed ID: 22408447
    [TBL] [Abstract][Full Text] [Related]  

  • 3. AFP-CMBPred: Computational identification of antifreeze proteins by extending consensus sequences into multi-blocks evolutionary information.
    Ali F; Akbar S; Ghulam A; Maher ZA; Unar A; Talpur DB
    Comput Biol Med; 2021 Dec; 139():105006. PubMed ID: 34749096
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Effective Antifreeze Protein Predictor with Ensemble Classifiers and Comprehensive Sequence Descriptors.
    Yang R; Zhang C; Gao R; Zhang L
    Int J Mol Sci; 2015 Sep; 16(9):21191-214. PubMed ID: 26370959
    [TBL] [Abstract][Full Text] [Related]  

  • 5. AFP-Pred: A random forest approach for predicting antifreeze proteins from sequence-derived properties.
    Kandaswamy KK; Chou KC; Martinetz T; Möller S; Suganthan PN; Sridharan S; Pugalenthi G
    J Theor Biol; 2011 Feb; 270(1):56-62. PubMed ID: 21056045
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chou's pseudo amino acid composition improves sequence-based antifreeze protein prediction.
    Mondal S; Pai PP
    J Theor Biol; 2014 Sep; 356():30-5. PubMed ID: 24732262
    [TBL] [Abstract][Full Text] [Related]  

  • 7. TargetDBP: Accurate DNA-Binding Protein Prediction Via Sequence-Based Multi-View Feature Learning.
    Hu J; Zhou XG; Zhu YH; Yu DJ; Zhang GJ
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(4):1419-1429. PubMed ID: 30668479
    [TBL] [Abstract][Full Text] [Related]  

  • 8. iAFP-Ense: An Ensemble Classifier for Identifying Antifreeze Protein by Incorporating Grey Model and PSSM into PseAAC.
    Xiao X; Hui M; Liu Z
    J Membr Biol; 2016 Dec; 249(6):845-854. PubMed ID: 27812737
    [TBL] [Abstract][Full Text] [Related]  

  • 9. AFP-SPTS: An Accurate Prediction of Antifreeze Proteins Using Sequential and Pseudo-Tri-Slicing Evolutionary Features with an Extremely Randomized Tree.
    Khan A; Uddin J; Ali F; Kumar H; Alghamdi W; Ahmad A
    J Chem Inf Model; 2023 Feb; 63(3):826-834. PubMed ID: 36649569
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Robust and accurate prediction of protein self-interactions from amino acids sequence using evolutionary information.
    An JY; You ZH; Chen X; Huang DS; Yan G; Wang DF
    Mol Biosyst; 2016 Nov; 12(12):3702-3710. PubMed ID: 27759121
    [TBL] [Abstract][Full Text] [Related]  

  • 11. AFP-LSE: Antifreeze Proteins Prediction Using Latent Space Encoding of Composition of k-Spaced Amino Acid Pairs.
    Usman M; Khan S; Lee JA
    Sci Rep; 2020 Apr; 10(1):7197. PubMed ID: 32345989
    [TBL] [Abstract][Full Text] [Related]  

  • 12. RAFP-Pred: Robust Prediction of Antifreeze Proteins Using Localized Analysis of n-Peptide Compositions.
    Khan S; Naseem I; Togneri R; Bennamoun M
    IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(1):244-250. PubMed ID: 28113406
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of immunoglobulins using Chou's pseudo amino acid composition with feature selection technique.
    Tang H; Chen W; Lin H
    Mol Biosyst; 2016 Apr; 12(4):1269-75. PubMed ID: 26883492
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of antifreeze proteins using machine learning.
    Khan A; Uddin J; Ali F; Ahmad A; Alghushairy O; Banjar A; Daud A
    Sci Rep; 2022 Nov; 12(1):20672. PubMed ID: 36450775
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An insight into the molecular basis for convergent evolution in fish antifreeze Proteins.
    Nath A; Chaube R; Subbiah K
    Comput Biol Med; 2013 Aug; 43(7):817-21. PubMed ID: 23746722
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting Protein-DNA Binding Residues by Weightedly Combining Sequence-Based Features and Boosting Multiple SVMs.
    Hu J; Li Y; Zhang M; Yang X; Shen HB; Yu DJ
    IEEE/ACM Trans Comput Biol Bioinform; 2017; 14(6):1389-1398. PubMed ID: 27740495
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PredHydroxy: computational prediction of protein hydroxylation site locations based on the primary structure.
    Shi SP; Chen X; Xu HD; Qiu JD
    Mol Biosyst; 2015 Mar; 11(3):819-25. PubMed ID: 25534958
    [TBL] [Abstract][Full Text] [Related]  

  • 18. iCataly-PseAAC: Identification of Enzymes Catalytic Sites Using Sequence Evolution Information with Grey Model GM (2,1).
    Xiao X; Hui MJ; Liu Z; Qiu WR
    J Membr Biol; 2015 Dec; 248(6):1033-41. PubMed ID: 26077845
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The properties, biotechnologies, and applications of antifreeze proteins.
    Xiang H; Yang X; Ke L; Hu Y
    Int J Biol Macromol; 2020 Jun; 153():661-675. PubMed ID: 32156540
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SOHPRED: a new bioinformatics tool for the characterization and prediction of human S-sulfenylation sites.
    Wang X; Yan R; Li J; Song J
    Mol Biosyst; 2016 Aug; 12(9):2849-58. PubMed ID: 27364688
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.