These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 26058969)

  • 1. Modelling the Transport of Nanoparticles under Blood Flow using an Agent-based Approach.
    Fullstone G; Wood J; Holcombe M; Battaglia G
    Sci Rep; 2015 Jun; 5():10649. PubMed ID: 26058969
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physicochemical characteristics of nanoparticles affect circulation, biodistribution, cellular internalization, and trafficking.
    Duan X; Li Y
    Small; 2013 May; 9(9-10):1521-32. PubMed ID: 23019091
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flow Rate Affects Nanoparticle Uptake into Endothelial Cells.
    Chen YY; Syed AM; MacMillan P; Rocheleau JV; Chan WCW
    Adv Mater; 2020 Jun; 32(24):e1906274. PubMed ID: 32383233
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploiting shape, cellular-hitchhiking and antibodies to target nanoparticles to lung endothelium: Synergy between physical, chemical and biological approaches.
    Anselmo AC; Kumar S; Gupta V; Pearce AM; Ragusa A; Muzykantov V; Mitragotri S
    Biomaterials; 2015 Nov; 68():1-8. PubMed ID: 26241497
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanoparticle-Protein Interactions: Therapeutic Approaches and Supramolecular Chemistry.
    Kopp M; Kollenda S; Epple M
    Acc Chem Res; 2017 Jun; 50(6):1383-1390. PubMed ID: 28480714
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct nanodrug delivery for tumor targeting subject to shear-augmented diffusion in blood flow.
    Xu Z; Kleinstreuer C
    Med Biol Eng Comput; 2018 Nov; 56(11):1949-1958. PubMed ID: 29696590
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The importance of nanoparticle shape in cancer drug delivery.
    Truong NP; Whittaker MR; Mak CW; Davis TP
    Expert Opin Drug Deliv; 2015 Jan; 12(1):129-42. PubMed ID: 25138827
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simulation of transport and extravasation of nanoparticles in tumors which exhibit enhanced permeability and retention effect.
    Podduturi VP; Magaña IB; O'Neal DP; Derosa PA
    Comput Methods Programs Biomed; 2013 Oct; 112(1):58-68. PubMed ID: 23871689
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preclinical studies to understand nanoparticle interaction with the immune system and its potential effects on nanoparticle biodistribution.
    Dobrovolskaia MA; Aggarwal P; Hall JB; McNeil SE
    Mol Pharm; 2008; 5(4):487-95. PubMed ID: 18510338
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nose-to-Brain Delivery: Investigation of the Transport of Nanoparticles with Different Surface Characteristics and Sizes in Excised Porcine Olfactory Epithelium.
    Mistry A; Stolnik S; Illum L
    Mol Pharm; 2015 Aug; 12(8):2755-66. PubMed ID: 25997083
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of nanoparticle shape, size, and surface functionalization on cellular uptake.
    Ma N; Ma C; Li C; Wang T; Tang Y; Wang H; Moul X; Chen Z; Hel N
    J Nanosci Nanotechnol; 2013 Oct; 13(10):6485-98. PubMed ID: 24245105
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SERS reveals the specific interaction of silver and gold nanoparticles with hemoglobin and red blood cell components.
    Drescher D; Büchner T; McNaughton D; Kneipp J
    Phys Chem Chem Phys; 2013 Apr; 15(15):5364-73. PubMed ID: 23426381
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolism of nanomaterials in vivo: blood circulation and organ clearance.
    Wang B; He X; Zhang Z; Zhao Y; Feng W
    Acc Chem Res; 2013 Mar; 46(3):761-9. PubMed ID: 23964655
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction.
    Hoshyar N; Gray S; Han H; Bao G
    Nanomedicine (Lond); 2016 Mar; 11(6):673-92. PubMed ID: 27003448
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optical barcoding of PLGA for multispectral analysis of nanoparticle fate in vivo.
    Medina DX; Householder KT; Ceton R; Kovalik T; Heffernan JM; Shankar RV; Bowser RP; Wechsler-Reya RJ; Sirianni RW
    J Control Release; 2017 May; 253():172-182. PubMed ID: 28263836
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Brain delivery property and accelerated blood clearance of cationic albumin conjugated pegylated nanoparticle.
    Lu W; Wan J; She Z; Jiang X
    J Control Release; 2007 Mar; 118(1):38-53. PubMed ID: 17240471
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An analytical approach for quantifying the influence of nanoparticle polydispersity on cellular delivered dose.
    Johnston ST; Faria M; Crampin EJ
    J R Soc Interface; 2018 Jul; 15(144):. PubMed ID: 30045893
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of the uptake of methacrylate-based nanoparticles in static and dynamic in vitro systems as well as in vivo.
    Rinkenauer AC; Press AT; Raasch M; Pietsch C; Schweizer S; Schwörer S; Rudolph KL; Mosig A; Bauer M; Traeger A; Schubert US
    J Control Release; 2015 Oct; 216():158-68. PubMed ID: 26277064
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A method for evaluating nanoparticle transport through the blood-brain barrier in vitro.
    Guarnieri D; Muscetti O; Netti PA
    Methods Mol Biol; 2014; 1141():185-99. PubMed ID: 24567140
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineered Hybrid Nanoparticles for On-Demand Diagnostics and Therapeutics.
    Nguyen KT; Zhao Y
    Acc Chem Res; 2015 Dec; 48(12):3016-25. PubMed ID: 26605438
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.