These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 26058982)

  • 1. Decomposition pathways of formamide in the presence of vanadium and titanium monoxides.
    Nguyen HT; Nguyen MT
    Phys Chem Chem Phys; 2015 Jul; 17(26):16927-36. PubMed ID: 26058982
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theoretical study of the decomposition of formamide in the presence of water molecules.
    Nguyen VS; Orlando TM; Leszczynski J; Nguyen MT
    J Phys Chem A; 2013 Mar; 117(12):2543-55. PubMed ID: 23461351
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Decomposition pathways of the neutral and protonated formamide in some lower-lying excited states.
    Nguyen HT; Nguyen VS; Trung NT; Havenith RW; Nguyen MT
    J Phys Chem A; 2013 Aug; 117(33):7904-17. PubMed ID: 23889466
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theoretical study of formamide decomposition pathways.
    Nguyen VS; Abbott HL; Dawley MM; Orlando TM; Leszczynski J; Nguyen MT
    J Phys Chem A; 2011 Feb; 115(5):841-51. PubMed ID: 21229996
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of water molecules on rearrangements of formamide on the kaolinite basal (001) surface.
    Nguyen HT; Nguyen MT
    J Phys Chem A; 2014 Aug; 118(34):7017-23. PubMed ID: 25072600
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Radical Pathways for the Prebiotic Formation of Pyrimidine Bases from Formamide.
    Nguyen HT; Jeilani YA; Hung HM; Nguyen MT
    J Phys Chem A; 2015 Aug; 119(33):8871-83. PubMed ID: 26196536
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of sulfur-deficient defect and water on rearrangements of formamide on pyrite (100) surface.
    Nguyen HT; Nguyen MT
    J Phys Chem A; 2014 Jun; 118(23):4079-86. PubMed ID: 24832217
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theoretical study of formamide decomposition pathways over (6,0) silicon-carbide nanotube.
    Esrafili MD; Ghanbari M; Nurazar R; Nematollahi P
    J Mol Model; 2015 Apr; 21(4):89. PubMed ID: 25783993
    [TBL] [Abstract][Full Text] [Related]  

  • 9. From formamide to purine: a self-catalyzed reaction pathway provides a feasible mechanism for the entire process.
    Wang J; Gu J; Nguyen MT; Springsteen G; Leszczynski J
    J Phys Chem B; 2013 Aug; 117(32):9333-42. PubMed ID: 23902343
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural and diffusion properties of formamide/water mixture interacting with TiO2 surface.
    Dushanov E; Kholmurodov Kh; Yasuoka K
    Bioorg Chem; 2013 Oct; 50():11-6. PubMed ID: 23933355
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism of the hydration of carbon dioxide: direct participation of H2O versus microsolvation.
    Nguyen MT; Matus MH; Jackson VE; Vu TN; Rustad JR; Dixon DA
    J Phys Chem A; 2008 Oct; 112(41):10386-98. PubMed ID: 18816037
    [TBL] [Abstract][Full Text] [Related]  

  • 12. From formamide to purine: an energetically viable mechanistic reaction pathway.
    Wang J; Gu J; Nguyen MT; Springsteen G; Leszczynski J
    J Phys Chem B; 2013 Feb; 117(8):2314-20. PubMed ID: 23347082
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electronic properties of vanadium-doped TiO2.
    Islam MM; Bredow T; Gerson A
    Chemphyschem; 2011 Dec; 12(17):3467-73. PubMed ID: 22025455
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanism-guided development of VO(salen)X complexes as catalysts for the asymmetric synthesis of cyanohydrin trimethylsilyl ethers.
    Belokon YN; Clegg W; Harrington RW; Maleev VI; North M; Pujol MO; Usanov DL; Young C
    Chemistry; 2009; 15(9):2148-65. PubMed ID: 19145602
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Peptide bond formation via glycine condensation in the gas phase.
    Van Dornshuld E; Vergenz RA; Tschumper GS
    J Phys Chem B; 2014 Jul; 118(29):8583-90. PubMed ID: 24992687
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface and bulk aspects of mixed oxide catalytic nanoparticles: oxidation and dehydration of CH(3)OH by polyoxometallates.
    Nakka L; Molinari JE; Wachs IE
    J Am Chem Soc; 2009 Oct; 131(42):15544-54. PubMed ID: 19807071
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A biomimetic pathway for vanadium-catalyzed aerobic oxidation of alcohols: evidence for a base-assisted dehydrogenation mechanism.
    Wigington BN; Drummond ML; Cundari TR; Thorn DL; Hanson SK; Scott SL
    Chemistry; 2012 Nov; 18(47):14981-8. PubMed ID: 23080554
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molybdenum and copper catalysis of reductions by titanium(II) and titanium(III).
    Yang Z; Gould ES
    Dalton Trans; 2006 Jan; (2):396-8. PubMed ID: 16365655
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Catalytic Role of Manganese Oxides in Prebiotic Nucleobases Synthesis from Formamide.
    Bhushan B; Nayak A; Kamaluddin
    Orig Life Evol Biosph; 2016 Jun; 46(2-3):203-13. PubMed ID: 26758444
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-catalytic mechanism of prebiotic reactions: from formamide to pterins and guanine.
    Enchev V; Slavova S
    Phys Chem Chem Phys; 2021 Sep; 23(34):19043-19053. PubMed ID: 34612442
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.