These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
203 related articles for article (PubMed ID: 26059285)
1. An Insight into Different Stabilization Mechanisms of Phenytoin Derivatives Supersaturation by HPMC and PVP. Otsuka N; Ueda K; Ohyagi N; Shimizu K; Katakawa K; Kumamoto T; Higashi K; Yamamoto K; Moribe K J Pharm Sci; 2015 Aug; 104(8):2574-82. PubMed ID: 26059285 [TBL] [Abstract][Full Text] [Related]
2. Mechanism of nanoparticle formation from ternary coground phenytoin and its derivatives. Moribe K; Ogino A; Kumamoto T; Ishikawa T; Limwikrant W; Higashi K; Yamamoto K J Pharm Sci; 2012 Sep; 101(9):3413-24. PubMed ID: 22487958 [TBL] [Abstract][Full Text] [Related]
3. Preparation and characterization of dipyridamole solid dispersions for stabilization of supersaturation: effect of precipitation inhibitors type and molecular weight. Vora C; Patadia R; Mittal K; Mashru R Pharm Dev Technol; 2016 Nov; 21(7):847-855. PubMed ID: 26333427 [TBL] [Abstract][Full Text] [Related]
4. Supersaturation of zafirlukast in fasted and fed state intestinal media with and without precipitation inhibitors. Madsen CM; Boyd B; Rades T; Müllertz A Eur J Pharm Sci; 2016 Aug; 91():31-9. PubMed ID: 27260089 [TBL] [Abstract][Full Text] [Related]
5. Comparative analysis of zaleplon complexation with cyclodextrins and hydrophilic polymers in solution and in solid state. Jablan J; Szalontai G; Jug M J Pharm Biomed Anal; 2012 Dec; 71():35-44. PubMed ID: 22898722 [TBL] [Abstract][Full Text] [Related]
6. Preparation and performance of hydroxypropyl methylcellulose esters of substituted succinates for in vitro supersaturation of a crystalline hydrophobic drug. Yin L; Hillmyer MA Mol Pharm; 2014 Jan; 11(1):175-85. PubMed ID: 24320108 [TBL] [Abstract][Full Text] [Related]
7. Effect of Polymer Species on Maximum Aqueous Phase Supersaturation Revealed by Quantitative Nuclear Magnetic Resonance Spectroscopy. Ueda K; Moseson DE; Pathak V; Taylor LS Mol Pharm; 2021 Mar; 18(3):1344-1355. PubMed ID: 33595322 [TBL] [Abstract][Full Text] [Related]
8. Impact of Surfactants on Polymer Maintained Nifedipine Supersaturation in Aqueous Solution. Wang S; Liu C; Chen H; Zhu AD; Qian F Pharm Res; 2020 May; 37(6):113. PubMed ID: 32476051 [TBL] [Abstract][Full Text] [Related]
9. Direct NMR Monitoring of Phase Separation Behavior of Highly Supersaturated Nifedipine Solution Stabilized with Hypromellose Derivatives. Ueda K; Higashi K; Moribe K Mol Pharm; 2017 Jul; 14(7):2314-2322. PubMed ID: 28558250 [TBL] [Abstract][Full Text] [Related]
11. Influence of water-soluble polymers on the in vitro performance of floating mucoadhesive tablets containing metformin. Rajab M; Jouma M; Neubert RH; Dittgen M Drug Dev Ind Pharm; 2014 Jul; 40(7):879-85. PubMed ID: 23607725 [TBL] [Abstract][Full Text] [Related]
12. Inhibition of crystal nucleation and growth by water-soluble polymers and its impact on the supersaturation profiles of amorphous drugs. Ozaki S; Kushida I; Yamashita T; Hasebe T; Shirai O; Kano K J Pharm Sci; 2013 Jul; 102(7):2273-81. PubMed ID: 23658029 [TBL] [Abstract][Full Text] [Related]
13. Wetting Kinetics: an Alternative Approach Towards Understanding the Enhanced Dissolution Rate for Amorphous Solid Dispersion of a Poorly Soluble Drug. Verma S; Rudraraju VS AAPS PharmSciTech; 2015 Oct; 16(5):1079-90. PubMed ID: 25672820 [TBL] [Abstract][Full Text] [Related]
14. Enhancing the physical stability and supersaturation generation of amorphous drug-polyelectrolyte nanoparticle complex via incorporation of crystallization inhibitor at the nanoparticle formation step: A case of HPMC versus PVP. Dong B; Lim LM; Hadinoto K Eur J Pharm Sci; 2019 Oct; 138():105035. PubMed ID: 31386892 [TBL] [Abstract][Full Text] [Related]
15. Solubility and Permeability Improvement of Quercetin by an Interaction Between α-Glucosyl Stevia Nanoaggregates and Hydrophilic Polymer. Uchiyama H; Wada Y; Hatanaka Y; Hirata Y; Taniguchi M; Kadota K; Tozuka Y J Pharm Sci; 2019 Jun; 108(6):2033-2040. PubMed ID: 30653971 [TBL] [Abstract][Full Text] [Related]
16. Physicochemical properties of tadalafil solid dispersions - Impact of polymer on the apparent solubility and dissolution rate of tadalafil. Wlodarski K; Sawicki W; Haber K; Knapik J; Wojnarowska Z; Paluch M; Lepek P; Hawelek L; Tajber L Eur J Pharm Biopharm; 2015 Aug; 94():106-15. PubMed ID: 25998701 [TBL] [Abstract][Full Text] [Related]
17. Polymer Type Impacts Amorphous Solubility and Drug-Rich Phase Colloidal Stability: A Mechanistic Study Using Nuclear Magnetic Resonance Spectroscopy. Ueda K; Taylor LS Mol Pharm; 2020 Apr; 17(4):1352-1362. PubMed ID: 32097023 [TBL] [Abstract][Full Text] [Related]
18. Application of Solid-State NMR Relaxometry for Characterization and Formulation Optimization of Grinding-Induced Drug Nanoparticle. Ueda K; Higashi K; Moribe K Mol Pharm; 2016 Mar; 13(3):852-62. PubMed ID: 26855230 [TBL] [Abstract][Full Text] [Related]
19. Dissolution of Danazol Amorphous Solid Dispersions: Supersaturation and Phase Behavior as a Function of Drug Loading and Polymer Type. Jackson MJ; Kestur US; Hussain MA; Taylor LS Mol Pharm; 2016 Jan; 13(1):223-31. PubMed ID: 26618718 [TBL] [Abstract][Full Text] [Related]
20. The twofold advantage of the amorphous form as an oral drug delivery practice for lipophilic compounds: increased apparent solubility and drug flux through the intestinal membrane. Dahan A; Beig A; Ioffe-Dahan V; Agbaria R; Miller JM AAPS J; 2013 Apr; 15(2):347-53. PubMed ID: 23242514 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]