BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 26059318)

  • 1. Formation of Silver Nanostructures by Rolling Circle Amplification Using Boranephosphonate-Modified Nucleotides.
    Russell C; Roy S; Ganguly S; Qian X; Caruthers MH; Nilsson M
    Anal Chem; 2015 Jul; 87(13):6660-6. PubMed ID: 26059318
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Silver nanoassemblies constructed from boranephosphonate DNA.
    Roy S; Olesiak M; Shang S; Caruthers MH
    J Am Chem Soc; 2013 Apr; 135(16):6234-41. PubMed ID: 23557435
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In Situ Electrochemical Generation of Electrochemiluminescent Silver Naonoclusters on Target-Cycling Synchronized Rolling Circle Amplification Platform for MicroRNA Detection.
    Chen A; Ma S; Zhuo Y; Chai Y; Yuan R
    Anal Chem; 2016 Mar; 88(6):3203-10. PubMed ID: 26885698
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Periodic fluorescent silver clusters assembled by rolling circle amplification and their sensor application.
    Ye T; Chen J; Liu Y; Ji X; Zhou G; He Z
    ACS Appl Mater Interfaces; 2014 Sep; 6(18):16091-6. PubMed ID: 25116051
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pyridinium Boranephosphonate Modified DNA Oligonucleotides.
    Roy S; Paul S; Roy M; Kundu R; Monfregola L; Caruthers MH
    J Org Chem; 2017 Feb; 82(3):1420-1427. PubMed ID: 28099007
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rolling circle amplification combined with gold nanoparticle aggregates for highly sensitive identification of single-nucleotide polymorphisms.
    Li J; Deng T; Chu X; Yang R; Jiang J; Shen G; Yu R
    Anal Chem; 2010 Apr; 82(7):2811-6. PubMed ID: 20192245
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A colorimetric method for H1N1 DNA detection using rolling circle amplification.
    Xing Y; Wang P; Zang Y; Ge Y; Jin Q; Zhao J; Xu X; Zhao G; Mao H
    Analyst; 2013 Jun; 138(12):3457-62. PubMed ID: 23653903
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rolling circle amplification with fluorescently labeled dUTP-balancing the yield and degree of labeling.
    Goryunova MS; Arzhanik VK; Zavriev SK; Ryazantsev DY
    Anal Bioanal Chem; 2021 Jun; 413(14):3737-3748. PubMed ID: 33834268
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A cascade signal amplification strategy for surface enhanced Raman spectroscopy detection of thrombin based on DNAzyme assistant DNA recycling and rolling circle amplification.
    Gao F; Du L; Tang D; Lu Y; Zhang Y; Zhang L
    Biosens Bioelectron; 2015 Apr; 66():423-30. PubMed ID: 25497982
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Real-time monitoring of mycobacterium genomic DNA with target-primed rolling circle amplification by a Au nanoparticle-embedded SPR biosensor.
    Xiang Y; Zhu X; Huang Q; Zheng J; Fu W
    Biosens Bioelectron; 2015 Apr; 66():512-9. PubMed ID: 25500527
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel electrochemical sensing strategy for rapid and ultrasensitive detection of Salmonella by rolling circle amplification and DNA-AuNPs probe.
    Zhu D; Yan Y; Lei P; Shen B; Cheng W; Ju H; Ding S
    Anal Chim Acta; 2014 Oct; 846():44-50. PubMed ID: 25220140
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Shaping Rolling Circle Amplification Products into DNA Nanoparticles by Incorporation of Modified Nucleotides and Their Application to In Vitro and In Vivo Delivery of a Photosensitizer.
    Kim KR; Röthlisberger P; Kang SJ; Nam K; Lee S; Hollenstein M; Ahn DR
    Molecules; 2018 Jul; 23(7):. PubMed ID: 30041480
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reduction of metal ions by boranephosphonate DNA.
    Roy S; Olesiak M; Padar P; McCuen H; Caruthers MH
    Org Biomol Chem; 2012 Dec; 10(46):9130-3. PubMed ID: 23032580
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isothermal and rapid detection of pathogenic microorganisms using a nano-rolling circle amplification-surface plasmon resonance biosensor.
    Shi D; Huang J; Chuai Z; Chen D; Zhu X; Wang H; Peng J; Wu H; Huang Q; Fu W
    Biosens Bioelectron; 2014 Dec; 62():280-7. PubMed ID: 25022511
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Universal aptameric system for highly sensitive detection of protein based on structure-switching-triggered rolling circle amplification.
    Wu ZS; Zhang S; Zhou H; Shen GL; Yu R
    Anal Chem; 2010 Mar; 82(6):2221-7. PubMed ID: 20151715
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rolling Circle Amplification with Chemically Modified Nucleoside Triphosphates.
    Hollenstein M; Damha MJ
    Curr Protoc Nucleic Acid Chem; 2016 Dec; 67():7.26.1-7.26.15. PubMed ID: 27911492
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Homogeneous detection of nucleic acids based upon the light scattering properties of silver-coated nanoparticle probes.
    Xu X; Georganopoulou DG; Hill HD; Mirkin CA
    Anal Chem; 2007 Sep; 79(17):6650-4. PubMed ID: 17663531
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A universal electrochemical sensing system for small biomolecules using target-mediated sticky ends-based ligation-rolling circle amplification.
    Yi X; Li L; Peng Y; Guo L
    Biosens Bioelectron; 2014 Jul; 57():103-9. PubMed ID: 24561524
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single-stranded DNA binding protein facilitates specific enrichment of circular DNA molecules using rolling circle amplification.
    Mikawa T; Inoue J; Shigemori Y
    Anal Biochem; 2009 Aug; 391(2):81-4. PubMed ID: 19442644
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Amplification of circularizable probes for the detection of target nucleic acids and proteins.
    Zhang D; Wu J; Ye F; Feng T; Lee I; Yin B
    Clin Chim Acta; 2006 Jan; 363(1-2):61-70. PubMed ID: 16122721
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.