These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
307 related articles for article (PubMed ID: 26059339)
1. Genome-wide identification of the Phaseolus vulgaris sRNAome using small RNA and degradome sequencing. Formey D; Iñiguez LP; Peláez P; Li YF; Sunkar R; Sánchez F; Reyes JL; Hernández G BMC Genomics; 2015 Jun; 16(1):423. PubMed ID: 26059339 [TBL] [Abstract][Full Text] [Related]
2. Identification and characterization of microRNAs in Phaseolus vulgaris by high-throughput sequencing. Peláez P; Trejo MS; Iñiguez LP; Estrada-Navarrete G; Covarrubias AA; Reyes JL; Sanchez F BMC Genomics; 2012 Mar; 13():83. PubMed ID: 22394504 [TBL] [Abstract][Full Text] [Related]
3. Genome-wide identification and in silico characterisation of microRNAs, their targets and processing pathway genes in Phaseolus vulgaris L. de Sousa Cardoso TC; Portilho LG; de Oliveira CL; McKeown PC; Maluf WR; Gomes LA; Teixeira TA; do Amaral LR; Spillane C; de Souza Gomes M Plant Biol (Stuttg); 2016 Mar; 18(2):206-19. PubMed ID: 26250338 [TBL] [Abstract][Full Text] [Related]
4. Regulation of Small RNAs and Corresponding Targets in Nod Factor-Induced Phaseolus vulgaris Root Hair Cells. Formey D; Martín-Rodríguez JÁ; Leija A; Santana O; Quinto C; Cárdenas L; Hernández G Int J Mol Sci; 2016 Jun; 17(6):. PubMed ID: 27271618 [TBL] [Abstract][Full Text] [Related]
5. Identification of Taxus microRNAs and their targets with high-throughput sequencing and degradome analysis. Hao DC; Yang L; Xiao PG; Liu M Physiol Plant; 2012 Dec; 146(4):388-403. PubMed ID: 22708792 [TBL] [Abstract][Full Text] [Related]
6. Computational identification of miRNAs and their targets in Phaseolus vulgaris. Han J; Xie H; Kong ML; Sun QP; Li RZ; Pan JB Genet Mol Res; 2014 Jan; 13(1):310-22. PubMed ID: 24535858 [TBL] [Abstract][Full Text] [Related]
7. Genome-wide identification and comprehensive analysis of microRNAs and phased small interfering RNAs in watermelon. Liu L; Ren S; Guo J; Wang Q; Zhang X; Liao P; Li S; Sunkar R; Zheng Y BMC Genomics; 2018 May; 19(Suppl 2):111. PubMed ID: 29764387 [TBL] [Abstract][Full Text] [Related]
8. Structural and functional based identification of the bean (Phaseolus) microRNAs and their targets from expressed sequence tags. Barozai MY; Din M; Baloch IA J Struct Funct Genomics; 2013 Mar; 14(1):11-8. PubMed ID: 23605779 [TBL] [Abstract][Full Text] [Related]
9. Small RNA profiling and degradome analysis reveal regulation of microRNA in peanut embryogenesis and early pod development. Gao C; Wang P; Zhao S; Zhao C; Xia H; Hou L; Ju Z; Zhang Y; Li C; Wang X BMC Genomics; 2017 Mar; 18(1):220. PubMed ID: 28253861 [TBL] [Abstract][Full Text] [Related]
10. Genome-wide characterization of rice black streaked dwarf virus-responsive microRNAs in rice leaves and roots by small RNA and degradome sequencing. Sun Z; He Y; Li J; Wang X; Chen J Plant Cell Physiol; 2015 Apr; 56(4):688-99. PubMed ID: 25535197 [TBL] [Abstract][Full Text] [Related]
11. Small RNA and degradome sequencing reveal complex miRNA regulation during cotton somatic embryogenesis. Yang X; Wang L; Yuan D; Lindsey K; Zhang X J Exp Bot; 2013 Apr; 64(6):1521-36. PubMed ID: 23382553 [TBL] [Abstract][Full Text] [Related]
12. Phased secondary small interfering RNAs in Panaxnotoginseng. Chen K; Liu L; Zhang X; Yuan Y; Ren S; Guo J; Wang Q; Liao P; Li S; Cui X; Li YF; Zheng Y BMC Genomics; 2018 Jan; 19(Suppl 1):41. PubMed ID: 29363419 [TBL] [Abstract][Full Text] [Related]
13. Banana sRNAome and degradome identify microRNAs functioning in differential responses to temperature stress. Zhu H; Zhang Y; Tang R; Qu H; Duan X; Jiang Y BMC Genomics; 2019 Jan; 20(1):33. PubMed ID: 30630418 [TBL] [Abstract][Full Text] [Related]
14. Conserved and novel miRNAs in the legume Phaseolus vulgaris in response to stress. Arenas-Huertero C; Pérez B; Rabanal F; Blanco-Melo D; De la Rosa C; Estrada-Navarrete G; Sanchez F; Covarrubias AA; Reyes JL Plant Mol Biol; 2009 Jul; 70(4):385-401. PubMed ID: 19353277 [TBL] [Abstract][Full Text] [Related]
15. Genome-wide discovery and analysis of phased small interfering RNAs in Chinese sacred lotus. Zheng Y; Wang S; Sunkar R PLoS One; 2014; 9(12):e113790. PubMed ID: 25469507 [TBL] [Abstract][Full Text] [Related]
16. Insights into the function of the phasiRNA-triggering miR1514 in response to stress in legumes. Sosa-Valencia G; Romero-Pérez PS; Palomar VM; Covarrubias AA; Reyes JL Plant Signal Behav; 2017 Mar; 12(3):e1284724. PubMed ID: 28151043 [TBL] [Abstract][Full Text] [Related]
17. Novel players in the AP2-miR172 regulatory network for common bean nodulation. Íñiguez LP; Nova-Franco B; Hernández G Plant Signal Behav; 2015; 10(10):e1062957. PubMed ID: 26211831 [TBL] [Abstract][Full Text] [Related]
18. A transcriptome-wide study on the microRNA- and the Argonaute 1-enriched small RNA-mediated regulatory networks involved in plant leaf senescence. Qin J; Ma X; Yi Z; Tang Z; Meng Y Plant Biol (Stuttg); 2016 Mar; 18(2):197-205. PubMed ID: 26206233 [TBL] [Abstract][Full Text] [Related]
19. High-throughput sequencing and degradome analysis reveal neutral evolution of Cercis gigantea microRNAs and their targets. Guo W; Zhang Y; Wang Q; Zhan Y; Zhu G; Yu Q; Zhu L Planta; 2016 Jan; 243(1):83-95. PubMed ID: 26342708 [TBL] [Abstract][Full Text] [Related]
20. Identification of miRNAs and Their Target Genes Associated with Sweet Corn Seed Vigor by Combined Small RNA and Degradome Sequencing. Gong S; Ding Y; Huang S; Zhu C J Agric Food Chem; 2015 Jun; 63(22):5485-91. PubMed ID: 25997082 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]