BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

312 related articles for article (PubMed ID: 26059339)

  • 1. Genome-wide identification of the Phaseolus vulgaris sRNAome using small RNA and degradome sequencing.
    Formey D; Iñiguez LP; Peláez P; Li YF; Sunkar R; Sánchez F; Reyes JL; Hernández G
    BMC Genomics; 2015 Jun; 16(1):423. PubMed ID: 26059339
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification and characterization of microRNAs in Phaseolus vulgaris by high-throughput sequencing.
    Peláez P; Trejo MS; Iñiguez LP; Estrada-Navarrete G; Covarrubias AA; Reyes JL; Sanchez F
    BMC Genomics; 2012 Mar; 13():83. PubMed ID: 22394504
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome-wide identification and in silico characterisation of microRNAs, their targets and processing pathway genes in Phaseolus vulgaris L.
    de Sousa Cardoso TC; Portilho LG; de Oliveira CL; McKeown PC; Maluf WR; Gomes LA; Teixeira TA; do Amaral LR; Spillane C; de Souza Gomes M
    Plant Biol (Stuttg); 2016 Mar; 18(2):206-19. PubMed ID: 26250338
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of Small RNAs and Corresponding Targets in Nod Factor-Induced Phaseolus vulgaris Root Hair Cells.
    Formey D; Martín-Rodríguez JÁ; Leija A; Santana O; Quinto C; Cárdenas L; Hernández G
    Int J Mol Sci; 2016 Jun; 17(6):. PubMed ID: 27271618
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of Taxus microRNAs and their targets with high-throughput sequencing and degradome analysis.
    Hao DC; Yang L; Xiao PG; Liu M
    Physiol Plant; 2012 Dec; 146(4):388-403. PubMed ID: 22708792
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational identification of miRNAs and their targets in Phaseolus vulgaris.
    Han J; Xie H; Kong ML; Sun QP; Li RZ; Pan JB
    Genet Mol Res; 2014 Jan; 13(1):310-22. PubMed ID: 24535858
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome-wide identification and comprehensive analysis of microRNAs and phased small interfering RNAs in watermelon.
    Liu L; Ren S; Guo J; Wang Q; Zhang X; Liao P; Li S; Sunkar R; Zheng Y
    BMC Genomics; 2018 May; 19(Suppl 2):111. PubMed ID: 29764387
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural and functional based identification of the bean (Phaseolus) microRNAs and their targets from expressed sequence tags.
    Barozai MY; Din M; Baloch IA
    J Struct Funct Genomics; 2013 Mar; 14(1):11-8. PubMed ID: 23605779
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Small RNA profiling and degradome analysis reveal regulation of microRNA in peanut embryogenesis and early pod development.
    Gao C; Wang P; Zhao S; Zhao C; Xia H; Hou L; Ju Z; Zhang Y; Li C; Wang X
    BMC Genomics; 2017 Mar; 18(1):220. PubMed ID: 28253861
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome-wide characterization of rice black streaked dwarf virus-responsive microRNAs in rice leaves and roots by small RNA and degradome sequencing.
    Sun Z; He Y; Li J; Wang X; Chen J
    Plant Cell Physiol; 2015 Apr; 56(4):688-99. PubMed ID: 25535197
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Small RNA and degradome sequencing reveal complex miRNA regulation during cotton somatic embryogenesis.
    Yang X; Wang L; Yuan D; Lindsey K; Zhang X
    J Exp Bot; 2013 Apr; 64(6):1521-36. PubMed ID: 23382553
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phased secondary small interfering RNAs in Panaxnotoginseng.
    Chen K; Liu L; Zhang X; Yuan Y; Ren S; Guo J; Wang Q; Liao P; Li S; Cui X; Li YF; Zheng Y
    BMC Genomics; 2018 Jan; 19(Suppl 1):41. PubMed ID: 29363419
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Banana sRNAome and degradome identify microRNAs functioning in differential responses to temperature stress.
    Zhu H; Zhang Y; Tang R; Qu H; Duan X; Jiang Y
    BMC Genomics; 2019 Jan; 20(1):33. PubMed ID: 30630418
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conserved and novel miRNAs in the legume Phaseolus vulgaris in response to stress.
    Arenas-Huertero C; Pérez B; Rabanal F; Blanco-Melo D; De la Rosa C; Estrada-Navarrete G; Sanchez F; Covarrubias AA; Reyes JL
    Plant Mol Biol; 2009 Jul; 70(4):385-401. PubMed ID: 19353277
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome-wide discovery and analysis of phased small interfering RNAs in Chinese sacred lotus.
    Zheng Y; Wang S; Sunkar R
    PLoS One; 2014; 9(12):e113790. PubMed ID: 25469507
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insights into the function of the phasiRNA-triggering miR1514 in response to stress in legumes.
    Sosa-Valencia G; Romero-Pérez PS; Palomar VM; Covarrubias AA; Reyes JL
    Plant Signal Behav; 2017 Mar; 12(3):e1284724. PubMed ID: 28151043
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel players in the AP2-miR172 regulatory network for common bean nodulation.
    Íñiguez LP; Nova-Franco B; Hernández G
    Plant Signal Behav; 2015; 10(10):e1062957. PubMed ID: 26211831
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A transcriptome-wide study on the microRNA- and the Argonaute 1-enriched small RNA-mediated regulatory networks involved in plant leaf senescence.
    Qin J; Ma X; Yi Z; Tang Z; Meng Y
    Plant Biol (Stuttg); 2016 Mar; 18(2):197-205. PubMed ID: 26206233
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-throughput sequencing and degradome analysis reveal neutral evolution of Cercis gigantea microRNAs and their targets.
    Guo W; Zhang Y; Wang Q; Zhan Y; Zhu G; Yu Q; Zhu L
    Planta; 2016 Jan; 243(1):83-95. PubMed ID: 26342708
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of miRNAs and Their Target Genes Associated with Sweet Corn Seed Vigor by Combined Small RNA and Degradome Sequencing.
    Gong S; Ding Y; Huang S; Zhu C
    J Agric Food Chem; 2015 Jun; 63(22):5485-91. PubMed ID: 25997082
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.