These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 2605938)

  • 1. The structure of mineralized collagen fibrils.
    Katz EP; Wachtel E; Yamauchi M; Mechanic GL
    Connect Tissue Res; 1989; 21(1-4):149-54; discussion 155-8. PubMed ID: 2605938
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Elastic deformation of mineralized collagen fibrils: an equivalent inclusion based composite model.
    Akkus O
    J Biomech Eng; 2005 Jun; 127(3):383-90. PubMed ID: 16060345
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular models illustrating the possible distributions of 'holes' in simple systematically staggered arrays of type I collagen molecules in native-type fibrils.
    Hodge AJ
    Connect Tissue Res; 1989; 21(1-4):137-47. PubMed ID: 2605937
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neutron diffraction studies of collagen in fully mineralized bone.
    Bonar LC; Lees S; Mook HA
    J Mol Biol; 1985 Jan; 181(2):265-70. PubMed ID: 3981637
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mineral anisotropy in mineralized tissues is similar among species and mineral growth occurs independently of collagen orientation in rats: results from acoustic velocity measurements.
    Takano Y; Turner CH; Burr DB
    J Bone Miner Res; 1996 Sep; 11(9):1292-301. PubMed ID: 8864904
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mineralization of type I collagen.
    Lees S
    Biophys J; 2003 Jul; 85(1):204-7. PubMed ID: 12829476
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-dimensional spatial relationship between the collagen fibrils and the inorganic calcium phosphate crystals of pickerel (Americanus americanus) and herring (Clupea harengus) bone.
    Lee DD; Glimcher MJ
    J Mol Biol; 1991 Feb; 217(3):487-501. PubMed ID: 1994036
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Collagen structure regulates fibril mineralization in osteogenesis as revealed by cross-link patterns in calcifying callus.
    Wassen MH; Lammens J; Tekoppele JM; Sakkers RJ; Liu Z; Verbout AJ; Bank RA
    J Bone Miner Res; 2000 Sep; 15(9):1776-85. PubMed ID: 10976997
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cross-linking and stereospecific structure of collagen in mineralized and nonmineralized skeletal tissues.
    Yamauchi M; Katz EP; Otsubo K; Teraoka K; Mechanic GL
    Connect Tissue Res; 1989; 21(1-4):159-67; discussion 168-9. PubMed ID: 2605940
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of the mineral staggering on the elastic properties of the mineralized collagen fibril in lamellar bone.
    Vercher-Martínez A; Giner E; Arango C; Fuenmayor FJ
    J Mech Behav Biomed Mater; 2015 Feb; 42():243-56. PubMed ID: 25498297
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Techniques to assess bone ultrastructure organization: orientation and arrangement of mineralized collagen fibrils.
    Georgiadis M; Müller R; Schneider P
    J R Soc Interface; 2016 Jun; 13(119):. PubMed ID: 27335222
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The nature of the mineral component of bone and the mechanism of calcification.
    Glimcher MJ
    Instr Course Lect; 1987; 36():49-69. PubMed ID: 3325562
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hierarchical modeling of the elastic properties of bone at submicron scales: the role of extrafibrillar mineralization.
    Nikolov S; Raabe D
    Biophys J; 2008 Jun; 94(11):4220-32. PubMed ID: 18310256
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural relations between collagen and mineral in bone as determined by high voltage electron microscopic tomography.
    Landis WJ; Hodgens KJ; Arena J; Song MJ; McEwen BF
    Microsc Res Tech; 1996 Feb; 33(2):192-202. PubMed ID: 8845518
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure analysis of collagen fibril at atomic-level resolution and its implications for intra-fibrillar transport in bone biomineralization.
    Xu Z; Zhao W; Wang Z; Yang Y; Sahai N
    Phys Chem Chem Phys; 2018 Jan; 20(3):1513-1523. PubMed ID: 29260165
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Size and shape of mineralites in young bovine bone measured by atomic force microscopy.
    Tong W; Glimcher MJ; Katz JL; Kuhn L; Eppell SJ
    Calcif Tissue Int; 2003 May; 72(5):592-8. PubMed ID: 12724830
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mineralized collagen fibrils: a mechanical model with a staggered arrangement of mineral particles.
    Jäger I; Fratzl P
    Biophys J; 2000 Oct; 79(4):1737-46. PubMed ID: 11023882
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The locus of mineral crystallites in bone.
    Lees S; Prostak K
    Connect Tissue Res; 1988; 18(1):41-54. PubMed ID: 3180814
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mineralization by inhibitor exclusion: the calcification of collagen with fetuin.
    Price PA; Toroian D; Lim JE
    J Biol Chem; 2009 Jun; 284(25):17092-17101. PubMed ID: 19414589
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Microscopic aspects on biomineralization in bone].
    Amizuka N; Hasegawa T; Yamamoto T; Oda K
    Clin Calcium; 2014 Feb; 24(2):203-14. PubMed ID: 24473353
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.