These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 2605938)

  • 21. Role of intrafibrillar collagen mineralization in defining the compressive properties of nascent bone.
    Nair AK; Gautieri A; Buehler MJ
    Biomacromolecules; 2014 Jul; 15(7):2494-500. PubMed ID: 24892376
    [TBL] [Abstract][Full Text] [Related]  

  • 22. X-ray diffraction by collagen in the fully mineralized cortical bone of cow tibia.
    Lees S; Hukins DW
    Bone Miner; 1992 Apr; 17(1):59-63. PubMed ID: 1581706
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Collagen-mineral axial relationship in calcified turkey leg tendon by X-ray and neutron diffraction.
    White SW; Hulmes DJ; Miller A; Timmins PA
    Nature; 1977 Mar; 266(5601):421-5. PubMed ID: 859610
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Discerning the subfibrillar structure of mineralized collagen fibrils: a model for the ultrastructure of bone.
    Li Y; Aparicio C
    PLoS One; 2013; 8(9):e76782. PubMed ID: 24086763
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The supramolecular structure of bone: X-ray scattering analysis and lateral structure modeling.
    Zhou HW; Burger C; Wang H; Hsiao BS; Chu B; Graham L
    Acta Crystallogr D Struct Biol; 2016 Sep; 72(Pt 9):986-96. PubMed ID: 27599731
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of hydration and mineralization on the deformation mechanisms of collagen fibrils in bone at the nanoscale.
    Fielder M; Nair AK
    Biomech Model Mechanobiol; 2019 Feb; 18(1):57-68. PubMed ID: 30088113
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Vesicle- and collagen-mediated calcification in the turkey leg tendon.
    Landis WJ; Arsenault AL
    Connect Tissue Res; 1989; 22(1-4):35-42; discussion 53-61. PubMed ID: 2598669
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Considerations regarding the structure of the mammalian mineralized osteoid from viewpoint of the generalized packing model.
    Lees S
    Connect Tissue Res; 1987; 16(4):281-303. PubMed ID: 3451846
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Synchrotron diffraction study of deformation mechanisms in mineralized tendon.
    Gupta HS; Messmer P; Roschger P; Bernstorff S; Klaushofer K; Fratzl P
    Phys Rev Lett; 2004 Oct; 93(15):158101. PubMed ID: 15524943
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The emergence of an unusual stiffness profile in hierarchical biological tissues.
    Bar-On B; Wagner HD
    Acta Biomater; 2013 Sep; 9(9):8099-109. PubMed ID: 23669625
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The consequences of dehydration-hydration on bone anisotropy and implications on the sublamellar organization of mineralized collagen fibrils.
    Utku FS
    J Biomech; 2020 May; 104():109737. PubMed ID: 32197790
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bio-inspired Synthesis of Mineralized Collagen Fibrils.
    Deshpande AS; Beniash E
    Cryst Growth Des; 2008 Aug; 8(8):3084-3090. PubMed ID: 19662103
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A mixed packing model for bone collagen.
    Lees S
    Calcif Tissue Int; 1981; 33(6):591-602. PubMed ID: 6799171
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Modelling the mechanics of partially mineralized collagen fibrils, fibres and tissue.
    Liu Y; Thomopoulos S; Chen C; Birman V; Buehler MJ; Genin GM
    J R Soc Interface; 2014 Mar; 11(92):20130835. PubMed ID: 24352669
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Substitutions of aspartic acid for glycine-220 and of arginine for glycine-664 in the triple helix of the pro alpha 1(I) chain of type I procollagen produce lethal osteogenesis imperfecta and disrupt the ability of collagen fibrils to incorporate crystalline hydroxyapatite.
    Culbert AA; Lowe MP; Atkinson M; Byers PH; Wallis GA; Kadler KE
    Biochem J; 1995 Nov; 311 ( Pt 3)(Pt 3):815-20. PubMed ID: 7487936
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sensitivity analysis and parametric study of elastic properties of an unidirectional mineralized bone fibril-array using mean field methods.
    Reisinger AG; Pahr DH; Zysset PK
    Biomech Model Mechanobiol; 2010 Oct; 9(5):499-510. PubMed ID: 20135190
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bone-composition imaging using coherent-scatter computed tomography: assessing bone health beyond bone mineral density.
    Batchelar DL; Davidson MT; Dabrowski W; Cunningham IA
    Med Phys; 2006 Apr; 33(4):904-15. PubMed ID: 16696465
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Aspects of collagen mineralization in hard tissue formation.
    Wiesmann HP; Meyer U; Plate U; Höhling HJ
    Int Rev Cytol; 2005; 242():121-56. PubMed ID: 15598468
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Aspects of mineral structure in normally calcifying avian tendon.
    Siperko LM; Landis WJ
    J Struct Biol; 2001 Sep; 135(3):313-20. PubMed ID: 11722171
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of sodium chloride solutions on mineralized and unmineralized turkey leg tendon.
    Lees S; Capel M; Hukins DW; Mook HA
    Calcif Tissue Int; 1997 Jul; 61(1):74-6. PubMed ID: 9192518
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.