BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 2605949)

  • 1. The three-dimensional spatial relationship between the collagen fibrils and the inorganic calcium-phosphate crystals of pickerel and herring fish bone.
    Lee DD; Glimcher MJ
    Connect Tissue Res; 1989; 21(1-4):247-57. PubMed ID: 2605949
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-dimensional spatial relationship between the collagen fibrils and the inorganic calcium phosphate crystals of pickerel (Americanus americanus) and herring (Clupea harengus) bone.
    Lee DD; Glimcher MJ
    J Mol Biol; 1991 Feb; 217(3):487-501. PubMed ID: 1994036
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Early mineral deposition in calcifying tendon characterized by high voltage electron microscopy and three-dimensional graphic imaging.
    Landis WJ; Song MJ
    J Struct Biol; 1991 Oct; 107(2):116-27. PubMed ID: 1807348
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The locus of mineral crystallites in bone.
    Lees S; Prostak K
    Connect Tissue Res; 1988; 18(1):41-54. PubMed ID: 3180814
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The nature of the mineral component of bone and the mechanism of calcification.
    Glimcher MJ
    Instr Course Lect; 1987; 36():49-69. PubMed ID: 3325562
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mineral and organic matrix interaction in normally calcifying tendon visualized in three dimensions by high-voltage electron microscopic tomography and graphic image reconstruction.
    Landis WJ; Song MJ; Leith A; McEwen L; McEwen BF
    J Struct Biol; 1993; 110(1):39-54. PubMed ID: 8494671
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lateral packing of mineral crystals in bone collagen fibrils.
    Burger C; Zhou HW; Wang H; Sics I; Hsiao BS; Chu B; Graham L; Glimcher MJ
    Biophys J; 2008 Aug; 95(4):1985-92. PubMed ID: 18359799
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A composite coating by electrolysis-induced collagen self-assembly and calcium phosphate mineralization.
    Fan Y; Duan K; Wang R
    Biomaterials; 2005 May; 26(14):1623-32. PubMed ID: 15576136
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Observations on embryonic chick-bone crystals by high resolution transmission electron microscopy.
    Boothroyd B
    Clin Orthop Relat Res; 1975; (106):290-310. PubMed ID: 165025
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vectorial sequence of mineralization in the turkey leg tendon determined by electron microscopic imaging.
    Arsenault AL; Frankland BW; Ottensmeyer FP
    Calcif Tissue Int; 1991 Jan; 48(1):46-55. PubMed ID: 2007226
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comparative electron microscopic study of apatite crystals in collagen fibrils of rat bone, dentin and calcified turkey leg tendons.
    Arsenault AL
    Bone Miner; 1989 May; 6(2):165-77. PubMed ID: 2765707
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-dimensional ordered distribution of crystals in turkey tendon collagen fibers.
    Traub W; Arad T; Weiner S
    Proc Natl Acad Sci U S A; 1989 Dec; 86(24):9822-6. PubMed ID: 2602376
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Appearance of electron-dense segments: indication of possible conformational changes of pre-mineralizing collagen fibrils in the osteoid of rat bones.
    Asawa Y; Aoki K; Ohya K; Ohshima H; Takano Y
    J Electron Microsc (Tokyo); 2004; 53(4):423-33. PubMed ID: 15582942
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relationship between ultrastructure and the nanoindentation properties of intramuscular herring bones.
    Rho JY; Mishra SR; Chung K; Bai J; Pharr GM
    Ann Biomed Eng; 2001 Dec; 29(12):1082-8. PubMed ID: 11853259
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular investigations of the prenucleation mechanism of bone-like apatite assisted by type I collagen nanofibrils: insights into intrafibrillar mineralization.
    Xue Z; Wang X; Xu D
    Phys Chem Chem Phys; 2022 Aug; 24(31):18931-18942. PubMed ID: 35916012
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Scanning transmission electron microscopic tomography of cortical bone using Z-contrast imaging.
    McNally E; Nan F; Botton GA; Schwarcz HP
    Micron; 2013 Jun; 49():46-53. PubMed ID: 23545162
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Minerals and aligned collagen fibrils in tilapia fish scales: structural analysis using dark-field and energy-filtered transmission electron microscopy and electron tomography.
    Okuda M; Ogawa N; Takeguchi M; Hashimoto A; Tagaya M; Chen S; Hanagata N; Ikoma T
    Microsc Microanal; 2011 Oct; 17(5):788-98. PubMed ID: 21899811
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation of mineralized nanofibers: collagen fibrils containing calcium phosphate.
    Maas M; Guo P; Keeney M; Yang F; Hsu TM; Fuller GG; Martin CR; Zare RN
    Nano Lett; 2011 Mar; 11(3):1383-8. PubMed ID: 21280646
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The ultrastructure of bone as revealed in electron microscopy of ion-milled sections.
    Schwarcz HP
    Semin Cell Dev Biol; 2015 Oct; 46():44-50. PubMed ID: 26165821
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Image analysis of mineralized and non-mineralized type I collagen fibrils.
    Arsenault AL
    J Electron Microsc Tech; 1991 Jul; 18(3):262-8. PubMed ID: 1880599
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.