These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 2605952)

  • 1. Ex-vivo study of molecular interfaces in calcified tissues.
    Lamure A; Lacabanne C; Harmand MF; Vignoles M; Bonel G
    Connect Tissue Res; 1989; 21(1-4):275-9; discussion 280. PubMed ID: 2605952
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of interfaces in human calcified tissue.
    Martin M; Lamure A; Lacabanne C; Betin C; Harmand MF
    Biomaterials; 1990 Jul; 11():11-2. PubMed ID: 2118810
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular interface characterization in human bone matrix. I. Biochemical and IR spectroscopic studies.
    Raif EM; Harmand MF
    Biomaterials; 1993 Oct; 14(13):978-84. PubMed ID: 8286676
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The hydroxyl content of calcified tissue mineral.
    Biltz RM; Pellegrino ED
    Calcif Tissue Res; 1971; 7(3):259-63. PubMed ID: 5106030
    [No Abstract]   [Full Text] [Related]  

  • 5. Osteonectin and Gla-protein in calf bone: ultrastructural immunohistochemical localization using the Protein A-gold method.
    Bianco P; Hayashi Y; Silvestrini G; Termine JD; Bonucci E
    Calcif Tissue Int; 1985 Dec; 37(6):684-6. PubMed ID: 2418932
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Concentrations of osteocalcin and phosphoprotein as a function of mineral content and age in cortical bone.
    Lian JB; Roufosse AH; Reit B; Glimcher MJ
    Calcif Tissue Int; 1982; 34 Suppl 2():S82-7. PubMed ID: 6816454
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Advances in periodontal diagnosis. 10. Potential markers of bone resorption.
    Eley BM; Cox SW
    Br Dent J; 1998 May; 184(10):489-92. PubMed ID: 9642864
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of fixation and demineralization on the retention of bone phosphoprotein and other matrix components as evaluated by biochemical analyses and quantitative immunocytochemistry.
    McKee MD; Nanci A; Landis WJ; Gotoh Y; Gerstenfeld LC; Glimcher MJ
    J Bone Miner Res; 1991 Sep; 6(9):937-45. PubMed ID: 1789141
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparative study of fibrous dysplasia and osteofibrous dysplasia with regard to expressions of c-fos and c-jun products and bone matrix proteins: a clinicopathologic review and immunohistochemical study of c-fos, c-jun, type I collagen, osteonectin, osteopontin, and osteocalcin.
    Sakamoto A; Oda Y; Iwamoto Y; Tsuneyoshi M
    Hum Pathol; 1999 Dec; 30(12):1418-26. PubMed ID: 10667418
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differences in composition of cell-attachment sialoproteins between dentin and bone.
    Fujisawa R; Butler WT; Brunn JC; Zhou HY; Kuboki Y
    J Dent Res; 1993 Aug; 72(8):1222-6. PubMed ID: 8360366
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Osteonectin, bone proteoglycan, and phosphophoryn defects in a form of bovine osteogenesis imperfecta.
    Termine JD; Robey PG; Fisher LW; Shimokawa H; Drum MA; Conn KM; Hawkins GR; Cruz JB; Thompson KG
    Proc Natl Acad Sci U S A; 1984 Apr; 81(7):2213-7. PubMed ID: 6585794
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The isolation of anionic phosphoproteins from bovine cortical bone via the periodate solubilization of bone collagen.
    Shuttleworth A; Veis A
    Biochim Biophys Acta; 1972 Feb; 257(2):414-20. PubMed ID: 4336720
    [No Abstract]   [Full Text] [Related]  

  • 13. Mineralized tissue protein profiles in the Australian form of bovine osteogenesis imperfecta.
    Fisher LW; Denholm LJ; Conn KM; Termine JD
    Calcif Tissue Int; 1986 Jan; 38(1):16-20. PubMed ID: 3079647
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Thermal stability of carbonates in bone tissue].
    Legros R; Godinot C; Torres L; Mathieu J; Bonel G
    J Biol Buccale; 1982 Mar; 10(1):3-9. PubMed ID: 6953066
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The hydroxyl content of calcified tissue mineral. Comment to the letter of Biltz and Pellegrino.
    Vatassery GT; Armstrong WD; Singer L
    Calcif Tissue Res; 1971; 7(3):264-6. PubMed ID: 5568659
    [No Abstract]   [Full Text] [Related]  

  • 16. Isolation and properties of fluorescent components associated with calcified tissue collagen.
    Armstrong WG; Horsley HJ
    Calcif Tissue Res; 1972; 8(3):197-210. PubMed ID: 5017727
    [No Abstract]   [Full Text] [Related]  

  • 17. Pole figures of the orientation of apatite in bones.
    Nightingale JP; Lewis D
    Nature; 1971 Jul; 232(5309):334-5. PubMed ID: 5094837
    [No Abstract]   [Full Text] [Related]  

  • 18. Investigation of osteocalcin, osteonectin, and dentin sialophosphoprotein in developing human teeth.
    Papagerakis P; Berdal A; Mesbah M; Peuchmaur M; Malaval L; Nydegger J; Simmer J; Macdougall M
    Bone; 2002 Feb; 30(2):377-85. PubMed ID: 11856645
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Some quantum aspects of the protein intermolecular interfaces in connective tissue.
    Hoerman KC; Balekjian AY; Boyne PJ
    J Dent Res; 1969; 48(5):661-70. PubMed ID: 4981167
    [No Abstract]   [Full Text] [Related]  

  • 20. Noncollagenous proteins influencing the local mechanisms of calcification.
    Fisher LW; Termine JD
    Clin Orthop Relat Res; 1985 Nov; (200):362-85. PubMed ID: 3905122
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.