These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

329 related articles for article (PubMed ID: 26059817)

  • 21. Microfluidics-Based Chromosome Conformation Capture (3C) Technology for Examining Chromatin Organization with a Low Quantity of Cells.
    Sun C; Lu C
    Anal Chem; 2018 Mar; 90(6):3714-3719. PubMed ID: 29498513
    [TBL] [Abstract][Full Text] [Related]  

  • 22. What's in the "fold"?
    Mehra P; Kalani A
    Life Sci; 2018 Oct; 211():118-125. PubMed ID: 30213728
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Using DNase Hi-C techniques to map global and local three-dimensional genome architecture at high resolution.
    Ma W; Ay F; Lee C; Gulsoy G; Deng X; Cook S; Hesson J; Cavanaugh C; Ware CB; Krumm A; Shendure J; Blau CA; Disteche CM; Noble WS; Duan Z
    Methods; 2018 Jun; 142():59-73. PubMed ID: 29382556
    [TBL] [Abstract][Full Text] [Related]  

  • 24. From cells to chromatin: capturing snapshots of genome organization with 5C technology.
    Ferraiuolo MA; Sanyal A; Naumova N; Dekker J; Dostie J
    Methods; 2012 Nov; 58(3):255-67. PubMed ID: 23137922
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Exploring the three-dimensional organization of genomes: interpreting chromatin interaction data.
    Dekker J; Marti-Renom MA; Mirny LA
    Nat Rev Genet; 2013 Jun; 14(6):390-403. PubMed ID: 23657480
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A (3D-Nuclear) Space Odyssey: Making Sense of Hi-C Maps.
    Mota-Gómez I; Lupiáñez DG
    Genes (Basel); 2019 May; 10(6):. PubMed ID: 31146487
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Chromatin challenges during DNA replication and repair.
    Groth A; Rocha W; Verreault A; Almouzni G
    Cell; 2007 Feb; 128(4):721-33. PubMed ID: 17320509
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Plant 3D Chromatin Organization: Important Insights from Chromosome Conformation Capture Analyses of the Last 10 Years.
    Zhang X; Wang T
    Plant Cell Physiol; 2021 Dec; 62(11):1648-1661. PubMed ID: 34486654
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Chromatin structure and replication origins: determinants of chromosome replication and nuclear organization.
    Smith OK; Aladjem MI
    J Mol Biol; 2014 Oct; 426(20):3330-41. PubMed ID: 24905010
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Chromatin structure and dynamics: functional implications.
    Morales V; Giamarchi C; Chailleux C; Moro F; Marsaud V; Le Ricousse S; Richard-Foy H
    Biochimie; 2001; 83(11-12):1029-39. PubMed ID: 11879731
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Simulation of different three-dimensional polymer models of interphase chromosomes compared to experiments-an evaluation and review framework of the 3D genome organization.
    Knoch TA
    Semin Cell Dev Biol; 2019 Jun; 90():19-42. PubMed ID: 30125668
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Spatial genome organization: contrasting views from chromosome conformation capture and fluorescence in situ hybridization.
    Williamson I; Berlivet S; Eskeland R; Boyle S; Illingworth RS; Paquette D; Dostie J; Bickmore WA
    Genes Dev; 2014 Dec; 28(24):2778-91. PubMed ID: 25512564
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Compendium of Methods to Analyze the Spatial Organization of Plant Chromatin.
    Probst AV
    Methods Mol Biol; 2018; 1675():397-418. PubMed ID: 29052204
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Systematic determination of replication activity type highlights interconnections between replication, chromatin structure and nuclear localization.
    Farkash-Amar S; David Y; Polten A; Hezroni H; Eldar YC; Meshorer E; Yakhini Z; Simon I
    PLoS One; 2012; 7(11):e48986. PubMed ID: 23145042
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Chromatin Dynamics in Genome Stability: Roles in Suppressing Endogenous DNA Damage and Facilitating DNA Repair.
    Nair N; Shoaib M; Sørensen CS
    Int J Mol Sci; 2017 Jul; 18(7):. PubMed ID: 28698521
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Segmental folding of chromosomes: a basis for structural and regulatory chromosomal neighborhoods?
    Nora EP; Dekker J; Heard E
    Bioessays; 2013 Sep; 35(9):818-28. PubMed ID: 23832846
    [TBL] [Abstract][Full Text] [Related]  

  • 37. 3D genome organization and epigenetic regulation in autoimmune diseases.
    Qiu Y; Feng D; Jiang W; Zhang T; Lu Q; Zhao M
    Front Immunol; 2023; 14():1196123. PubMed ID: 37346038
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Topologically associating domains are stable units of replication-timing regulation.
    Pope BD; Ryba T; Dileep V; Yue F; Wu W; Denas O; Vera DL; Wang Y; Hansen RS; Canfield TK; Thurman RE; Cheng Y; Gülsoy G; Dennis JH; Snyder MP; Stamatoyannopoulos JA; Taylor J; Hardison RC; Kahveci T; Ren B; Gilbert DM
    Nature; 2014 Nov; 515(7527):402-5. PubMed ID: 25409831
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Single-cell Hi-C bridges microscopy and genome-wide sequencing approaches to study 3D chromatin organization.
    Ulianov SV; Tachibana-Konwalski K; Razin SV
    Bioessays; 2017 Oct; 39(10):. PubMed ID: 28792605
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Chromatin: mysteries solved?
    Peterson CL
    Biochem Cell Biol; 2001; 79(3):219-25. PubMed ID: 11467736
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.