BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 26059818)

  • 1. Macroscopic modelling of bioethanol production from potato peel wastes in batch cultures supplemented with inorganic nitrogen.
    Richelle A; Ben Tahar I; Hassouna M; Bogaerts P
    Bioprocess Biosyst Eng; 2015 Sep; 38(9):1819-33. PubMed ID: 26059818
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nitrogen Sources Screening for Ethanol Production Using Carob Industrial Wastes.
    Raposo S; Constantino A; Rodrigues F; Rodrigues B; Lima-Costa ME
    Appl Biochem Biotechnol; 2017 Feb; 181(2):827-843. PubMed ID: 27761794
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimization of enzymatic hydrolysis and fermentation conditions for improved bioethanol production from potato peel residues.
    Ben Taher I; Fickers P; Chniti S; Hassouna M
    Biotechnol Prog; 2017 Mar; 33(2):397-406. PubMed ID: 27997079
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ethanol production from potato peel waste (PPW).
    Arapoglou D; Varzakas T; Vlyssides A; Israilides C
    Waste Manag; 2010 Oct; 30(10):1898-902. PubMed ID: 20471817
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrated bioethanol and biomanure production from potato waste.
    Chintagunta AD; Jacob S; Banerjee R
    Waste Manag; 2016 Mar; 49():320-325. PubMed ID: 26316099
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Parameter estimation for simultaneous saccharification and fermentation of food waste into ethanol using Matlab Simulink.
    Davis RA
    Appl Biochem Biotechnol; 2008 Mar; 147(1-3):11-21. PubMed ID: 18401750
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amphipathic lignin derivatives to accelerate simultaneous saccharification and fermentation of unbleached softwood pulp for bioethanol production.
    Cheng N; Yamamoto Y; Koda K; Tamai Y; Uraki Y
    Bioresour Technol; 2014 Dec; 173():104-109. PubMed ID: 25291627
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced Bio-Ethanol Production from Industrial Potato Waste by Statistical Medium Optimization.
    Izmirlioglu G; Demirci A
    Int J Mol Sci; 2015 Oct; 16(10):24490-505. PubMed ID: 26501261
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Implementation of graphitic carbon nitride nanomaterials and laser irradiation for increasing bioethanol production from potato processing wastes.
    Saeed S; Samer M; Mohamed MSM; Abdelsalam E; Mohamed YMA; Abdel-Hafez SH; Attia YA
    Environ Sci Pollut Res Int; 2022 May; 29(23):34887-34897. PubMed ID: 35040058
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimization of pretreatment and saccharification for the production of bioethanol from water hyacinth by Saccharomyces cerevisiae.
    Ahn DJ; Kim SK; Yun HS
    Bioprocess Biosyst Eng; 2012 Jan; 35(1-2):35-41. PubMed ID: 21909939
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conversion of coffee residue waste into bioethanol with using popping pretreatment.
    Choi IS; Wi SG; Kim SB; Bae HJ
    Bioresour Technol; 2012 Dec; 125():132-7. PubMed ID: 23026325
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lactic acid production with undefined mixed culture fermentation of potato peel waste.
    Liang S; McDonald AG; Coats ER
    Waste Manag; 2014 Nov; 34(11):2022-7. PubMed ID: 25127412
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of cashew apple juice for the production of fuel ethanol.
    Pinheiro AD; Rocha MV; Macedo GR; Gonçalves LR
    Appl Biochem Biotechnol; 2008 Mar; 148(1-3):227-34. PubMed ID: 18418754
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Production of omega-3 polyunsaturated fatty acids from cull potato using an algae culture process.
    Chi Z; Hu B; Liu Y; Frear C; Wen Z; Chen S
    Appl Biochem Biotechnol; 2007 Apr; 137-140(1-12):805-15. PubMed ID: 18478436
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A simultaneous saccharification and fermentation model for dynamic growth environments.
    Murthy GS; Johnston DB; Rausch KD; Tumbleson ME; Singh V
    Bioprocess Biosyst Eng; 2012 May; 35(4):519-34. PubMed ID: 21987306
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study of kinetic parameters in a mechanistic model for bioethanol production through a screening technique and optimization.
    de Andrade RR; Rivera EC; Atala DI; Filho RM; Filho FM; Costa AC
    Bioprocess Biosyst Eng; 2009 Aug; 32(5):673-80. PubMed ID: 19125302
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of nitrogen limitation on the ergosterol production by fed-batch culture of Saccharomyces cerevisiae.
    Shang F; Wen S; Wang X; Tan T
    J Biotechnol; 2006 Apr; 122(3):285-92. PubMed ID: 16488499
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient production of ethanol from empty palm fruit bunch fibers by fed-batch simultaneous saccharification and fermentation using Saccharomyces cerevisiae.
    Park JM; Oh BR; Seo JW; Hong WK; Yu A; Sohn JH; Kim CH
    Appl Biochem Biotechnol; 2013 Aug; 170(8):1807-14. PubMed ID: 23754558
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Control of yeast fed-batch process through regulation of extracellular ethanol concentration.
    Cannizzaro C; Valentinotti S; von Stockar U
    Bioprocess Biosyst Eng; 2004 Dec; 26(6):377-83. PubMed ID: 15597198
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling of yeast metabolism and process dynamics in batch fermentation.
    Sainz J; Pizarro F; Pérez-Correa JR; Agosin E
    Biotechnol Bioeng; 2003 Mar; 81(7):818-28. PubMed ID: 12557315
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.