These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

854 related articles for article (PubMed ID: 26059855)

  • 1. How sleep and wakefulness influence circadian rhythmicity: effects of insufficient and mistimed sleep on the animal and human transcriptome.
    Archer SN; Oster H
    J Sleep Res; 2015 Oct; 24(5):476-93. PubMed ID: 26059855
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tissue-Specific Dissociation of Diurnal Transcriptome Rhythms During Sleep Restriction in Mice.
    Husse J; Kiehn JT; Barclay JL; Naujokat N; Meyer-Kovac J; Lehnert H; Oster H
    Sleep; 2017 Jun; 40(6):. PubMed ID: 28444394
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The sleep-wake distribution contributes to the peripheral rhythms in PERIOD-2.
    Hoekstra MM; Jan M; Katsioudi G; Emmenegger Y; Franken P
    Elife; 2021 Dec; 10():. PubMed ID: 34895464
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Circadian clock genes and sleep homeostasis.
    Franken P; Dijk DJ
    Eur J Neurosci; 2009 May; 29(9):1820-9. PubMed ID: 19473235
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In Vivo Imaging of the Central and Peripheral Effects of Sleep Deprivation and Suprachiasmatic Nuclei Lesion on PERIOD-2 Protein in Mice.
    Curie T; Maret S; Emmenegger Y; Franken P
    Sleep; 2015 Sep; 38(9):1381-94. PubMed ID: 25581923
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mistimed sleep disrupts circadian regulation of the human transcriptome.
    Archer SN; Laing EE; Möller-Levet CS; van der Veen DR; Bucca G; Lazar AS; Santhi N; Slak A; Kabiljo R; von Schantz M; Smith CP; Dijk DJ
    Proc Natl Acad Sci U S A; 2014 Feb; 111(6):E682-91. PubMed ID: 24449876
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simulated night shift work induces circadian misalignment of the human peripheral blood mononuclear cell transcriptome.
    Kervezee L; Cuesta M; Cermakian N; Boivin DB
    Proc Natl Acad Sci U S A; 2018 May; 115(21):5540-5545. PubMed ID: 29735673
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Model integration of circadian- and sleep-wake-driven contributions to rhythmic gene expression reveals distinct regulatory principles.
    Jan M; Jimenez S; Hor CN; Dijk DJ; Skeldon AC; Franken P
    Cell Syst; 2024 Jul; 15(7):610-627.e8. PubMed ID: 38986625
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Circadian desynchrony promotes metabolic disruption in a mouse model of shiftwork.
    Barclay JL; Husse J; Bode B; Naujokat N; Meyer-Kovac J; Schmid SM; Lehnert H; Oster H
    PLoS One; 2012; 7(5):e37150. PubMed ID: 22629359
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Attenuated circadian rhythms in mice lacking the prokineticin 2 gene.
    Li JD; Hu WP; Boehmer L; Cheng MY; Lee AG; Jilek A; Siegel JM; Zhou QY
    J Neurosci; 2006 Nov; 26(45):11615-23. PubMed ID: 17093083
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Whole blood genome-wide gene expression profile in males after prolonged wakefulness and sleep recovery.
    Pellegrino R; Sunaga DY; Guindalini C; Martins RC; Mazzotti DR; Wei Z; Daye ZJ; Andersen ML; Tufik S
    Physiol Genomics; 2012 Nov; 44(21):1003-12. PubMed ID: 22947657
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mistimed sleep and waking activity in humans disrupts glucocorticoid signalling transcripts and SP1, but not plasma cortisol rhythms.
    Archer SN; Möller-Levet CS; Laing EE; Dijk DJ
    Front Physiol; 2022; 13():946444. PubMed ID: 36060675
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of aging and genotype on circadian rhythms, sleep, and clock gene expression in APPxPS1 knock-in mice, a model for Alzheimer's disease.
    Duncan MJ; Smith JT; Franklin KM; Beckett TL; Murphy MP; St Clair DK; Donohue KD; Striz M; O'Hara BF
    Exp Neurol; 2012 Aug; 236(2):249-58. PubMed ID: 22634208
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Circadian regulation of sleep-wake cycles and food anticipation].
    Nakamura W
    Brain Nerve; 2012 Jun; 64(6):647-56. PubMed ID: 22647472
    [TBL] [Abstract][Full Text] [Related]  

  • 15. EphA4 is Involved in Sleep Regulation but Not in the Electrophysiological Response to Sleep Deprivation.
    Freyburger M; Pierre A; Paquette G; Bélanger-Nelson E; Bedont J; Gaudreault PO; Drolet G; Laforest S; Blackshaw S; Cermakian N; Doucet G; Mongrain V
    Sleep; 2016 Mar; 39(3):613-24. PubMed ID: 26612390
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Sleep/wake cycle, circadian disruption and the development of obesity].
    Masaki T
    Nihon Rinsho; 2012 Jul; 70(7):1183-7. PubMed ID: 22844802
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Ontogenesis of circadian rhythm in the human].
    Pringuey D; Tible O; Cherikh F
    Encephale; 2009 Jan; 35 Suppl 2():S46-52. PubMed ID: 19268170
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiple mechanisms limit the duration of wakefulness in Drosophila brain.
    Zimmerman JE; Rizzo W; Shockley KR; Raizen DM; Naidoo N; Mackiewicz M; Churchill GA; Pack AI
    Physiol Genomics; 2006 Nov; 27(3):337-50. PubMed ID: 16954408
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Circadian rhythms in body temperature and sleep].
    Honma K
    Nihon Rinsho; 2013 Dec; 71(12):2076-81. PubMed ID: 24437258
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rewiring of liver diurnal transcriptome rhythms by triiodothyronine (T
    de Assis LVM; Harder L; Lacerda JT; Parsons R; Kaehler M; Cascorbi I; Nagel I; Rawashdeh O; Mittag J; Oster H
    Elife; 2022 Jul; 11():. PubMed ID: 35894384
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 43.