BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 26060071)

  • 1. Yeast Endoplasmic Reticulum Sequestration Screening for the Engineering of Proteases from Libraries Expressed in Yeast.
    Yi L; Taft JM; Li Q; Gebhard MC; Georgiou G; Iverson BL
    Methods Mol Biol; 2015; 1319():81-93. PubMed ID: 26060071
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering of TEV protease variants by yeast ER sequestration screening (YESS) of combinatorial libraries.
    Yi L; Gebhard MC; Li Q; Taft JM; Georgiou G; Iverson BL
    Proc Natl Acad Sci U S A; 2013 Apr; 110(18):7229-34. PubMed ID: 23589865
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Screening of Yeast Display Libraries of Enzymatically Treated Peptides to Discover Macrocyclic Peptide Ligands.
    Bowen J; Schneible J; Bacon K; Labar C; Menegatti S; Rao BM
    Int J Mol Sci; 2021 Feb; 22(4):. PubMed ID: 33562883
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isolation of pH-Sensitive Antibody Fragments by Fluorescence-Activated Cell Sorting and Yeast Surface Display.
    Schröter C; Krah S; Beck J; Könning D; Grzeschik J; Valldorf B; Zielonka S; Kolmar H
    Methods Mol Biol; 2018; 1685():311-331. PubMed ID: 29086318
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modular and integrative activity reporters enhance biochemical studies in the yeast ER.
    Martinusen SG; Slaton EW; Nelson SE; Pulgar MA; Besu JT; Simas CF; Denard CA
    Protein Eng Des Sel; 2024 Jan; 37():. PubMed ID: 38696722
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coupling Binding to Catalysis: Using Yeast Cell Surface Display to Select Enzymatic Activities.
    Zhang K; Bhuripanyo K; Wang Y; Yin J
    Methods Mol Biol; 2015; 1319():245-60. PubMed ID: 26060080
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Profiling Protease Specificity: Combining Yeast ER Sequestration Screening (YESS) with Next Generation Sequencing.
    Li Q; Yi L; Hoi KH; Marek P; Georgiou G; Iverson BL
    ACS Chem Biol; 2017 Feb; 12(2):510-518. PubMed ID: 27977123
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A combined approach to improving large-scale production of tobacco etch virus protease.
    Blommel PG; Fox BG
    Protein Expr Purif; 2007 Sep; 55(1):53-68. PubMed ID: 17543538
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protease substrate profiling using bacterial display of self-blocking affinity proteins and flow-cytometric sorting.
    Sandersjöö L; Jonsson A; Löfblom J
    Biotechnol J; 2017 Jan; 12(1):. PubMed ID: 27783465
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Yeast surface display for screening combinatorial polypeptide libraries.
    Boder ET; Wittrup KD
    Nat Biotechnol; 1997 Jun; 15(6):553-7. PubMed ID: 9181578
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein Engineering and Selection Using Yeast Surface Display.
    Angelini A; Chen TF; de Picciotto S; Yang NJ; Tzeng A; Santos MS; Van Deventer JA; Traxlmayr MW; Wittrup KD
    Methods Mol Biol; 2015; 1319():3-36. PubMed ID: 26060067
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enzyme Evolution by Yeast Cell Surface Engineering.
    Miura N; Kuroda K; Ueda M
    Methods Mol Biol; 2015; 1319():217-32. PubMed ID: 26060078
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selection of Antibodies with Tailored Properties by Application of High-Throughput Multiparameter Fluorescence-Activated Cell Sorting of Yeast-Displayed Immune Libraries.
    Schröter C; Beck J; Krah S; Zielonka S; Doerner A; Rhiel L; Günther R; Toleikis L; Kolmar H; Hock B; Becker S
    Mol Biotechnol; 2018 Oct; 60(10):727-735. PubMed ID: 30076531
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A protease substrate profiling method that links site-specific proteolysis with antibiotic resistance.
    Sandersjöö L; Kostallas G; Löfblom J; Samuelson P
    Biotechnol J; 2014 Jan; 9(1):155-62. PubMed ID: 24243818
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isolating and engineering human antibodies using yeast surface display.
    Chao G; Lau WL; Hackel BJ; Sazinsky SL; Lippow SM; Wittrup KD
    Nat Protoc; 2006; 1(2):755-68. PubMed ID: 17406305
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering of TEV protease variants with redesigned substrate specificity.
    Meister SW; Parks L; Kolmar L; Borras AM; Ståhl S; Löfblom J
    Biotechnol J; 2023 Nov; 18(11):e2200625. PubMed ID: 37448316
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expression and purification of soluble His(6)-tagged TEV protease.
    Tropea JE; Cherry S; Waugh DS
    Methods Mol Biol; 2009; 498():297-307. PubMed ID: 18988033
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein selection using yeast surface display.
    Gera N; Hussain M; Rao BM
    Methods; 2013 Mar; 60(1):15-26. PubMed ID: 22465794
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient site-specific processing of fusion proteins by tobacco vein mottling virus protease in vivo and in vitro.
    Nallamsetty S; Kapust RB; Tözsér J; Cherry S; Tropea JE; Copeland TD; Waugh DS
    Protein Expr Purif; 2004 Nov; 38(1):108-15. PubMed ID: 15477088
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Yeast Surface Display for Protein Engineering: Library Generation, Screening, and Affinity Maturation.
    Kang BH; Lax BM; Wittrup KD
    Methods Mol Biol; 2022; 2491():29-62. PubMed ID: 35482183
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.