These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 26060238)

  • 1. Influencing Trust for Human-Automation Collaborative Scheduling of Multiple Unmanned Vehicles.
    Clare AS; Cummings ML; Repenning NP
    Hum Factors; 2015 Nov; 57(7):1208-18. PubMed ID: 26060238
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of human-automation consensus in multiple unmanned vehicle scheduling.
    Cummings ML; Clare A; Hart C
    Hum Factors; 2010 Feb; 52(1):17-27. PubMed ID: 20653222
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multimodal control of sensors on multiple simulated unmanned vehicles.
    Baber C; Morin C; Parekh M; Cahillane M; Houghton RJ
    Ergonomics; 2011 Sep; 54(9):792-805. PubMed ID: 21867372
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Team performance in networked supervisory control of unmanned air vehicles: effects of automation, working memory, and communication content.
    McKendrick R; Shaw T; de Visser E; Saqer H; Kidwell B; Parasuraman R
    Hum Factors; 2014 May; 56(3):463-75. PubMed ID: 24930169
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human-automation interaction for multiple robot control: the effect of varying automation assistance and individual differences on operator performance.
    Wright JL; Chen JYC; Barnes MJ
    Ergonomics; 2018 Aug; 61(8):1033-1045. PubMed ID: 29451105
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experience of automation failures in training: effects on trust, automation bias, complacency and performance.
    Sauer J; Chavaillaz A; Wastell D
    Ergonomics; 2016 Jun; 59(6):767-80. PubMed ID: 26374396
    [TBL] [Abstract][Full Text] [Related]  

  • 7. System reliability, performance and trust in adaptable automation.
    Chavaillaz A; Wastell D; Sauer J
    Appl Ergon; 2016 Jan; 52():333-42. PubMed ID: 26360226
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of automation and task load on task switching during human supervision of multiple semi-autonomous robots in a dynamic environment.
    Squire PN; Parasuraman R
    Ergonomics; 2010 Aug; 53(8):951-61. PubMed ID: 20658389
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intelligent Agent Transparency in Human-Agent Teaming for Multi-UxV Management.
    Mercado JE; Rupp MA; Chen JY; Barnes MJ; Barber D; Procci K
    Hum Factors; 2016 May; 58(3):401-15. PubMed ID: 26867556
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automation transparency: implications of uncertainty communication for human-automation interaction and interfaces.
    Kunze A; Summerskill SJ; Marshall R; Filtness AJ
    Ergonomics; 2019 Mar; 62(3):345-360. PubMed ID: 30501566
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Role of Trust as a Mediator Between System Characteristics and Response Behaviors.
    Chancey ET; Bliss JP; Proaps AB; Madhavan P
    Hum Factors; 2015 Sep; 57(6):947-58. PubMed ID: 25917611
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Displaying contextual information reduces the costs of imperfect decision automation in rapid retasking of ISR assets.
    Rovira E; Cross A; Leitch E; Bonaceto C
    Hum Factors; 2014 Sep; 56(6):1036-49. PubMed ID: 25277015
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of information source, pedigree, and reliability on operator interaction with decision support systems.
    Madhavan P; Wiegmann DA
    Hum Factors; 2007 Oct; 49(5):773-85. PubMed ID: 17915596
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Trust in automation. Part II. Experimental studies of trust and human intervention in a process control simulation.
    Muir BM; Moray N
    Ergonomics; 1996 Mar; 39(3):429-60. PubMed ID: 8849495
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of automation transparency in the management of multiple unmanned vehicles.
    Bhaskara A; Duong L; Brooks J; Li R; McInerney R; Skinner M; Pongracic H; Loft S
    Appl Ergon; 2021 Jan; 90():103243. PubMed ID: 32919121
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of extended lay-off periods on performance and operator trust under adaptable automation.
    Chavaillaz A; Wastell D; Sauer J
    Appl Ergon; 2016 Mar; 53 Pt A():241-51. PubMed ID: 26603139
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Examining single- and multiple-process theories of trust in automation.
    Rice S
    J Gen Psychol; 2009 Jul; 136(3):303-19. PubMed ID: 19650524
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of the RoboFlag synthetic task environment to investigate workload and stress responses in UAV operation.
    Guznov S; Matthews G; Funke G; Dukes A
    Behav Res Methods; 2011 Sep; 43(3):771-80. PubMed ID: 21487900
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vigilance and Automation Dependence in Operation of Multiple Unmanned Aerial Systems (UAS): A Simulation Study.
    Wohleber RW; Matthews G; Lin J; Szalma JL; Calhoun GL; Funke GJ; Chiu CP; Ruff HA
    Hum Factors; 2019 May; 61(3):488-505. PubMed ID: 30265579
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detecting automation failures in a simulated supervisory control environment.
    Foroughi CK; Sibley C; Brown NL; Rovira E; Pak R; Coyne JT
    Ergonomics; 2019 Sep; 62(9):1150-1161. PubMed ID: 31179874
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.