BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 26060927)

  • 1. Comparison between EGSnrc, Geant4, MCNP5 and Penelope for mono-energetic electron beams.
    Archambault JP; Mainegra-Hing E
    Phys Med Biol; 2015 Jul; 60(13):4951-62. PubMed ID: 26060927
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monte Carlo calculations of electrons impinging on a copper target: A comparison of EGSnrc, Geant4 and MCNP5.
    Archambault JP
    Appl Radiat Isot; 2018 Feb; 132():129-134. PubMed ID: 29220726
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accuracy of the electron transport in mcnp5 and its suitability for ionization chamber response simulations: A comparison with the egsnrc and penelope codes.
    Koivunoro H; Siiskonen T; Kotiluoto P; Auterinen I; Hippelainen E; Savolainen S
    Med Phys; 2012 Mar; 39(3):1335-44. PubMed ID: 22380366
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiple scattering of 13 and 20 MeV electrons by thin foils: a Monte Carlo study with GEANT, Geant4, and PENELOPE.
    Vilches M; García-Pareja S; Guerrero R; Anguiano M; Lallena AM
    Med Phys; 2009 Sep; 36(9):3964-70. PubMed ID: 19810469
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of electron dose-point kernels in water generated by the Monte Carlo codes, PENELOPE, GEANT4, MCNPX, and ETRAN.
    Uusijärvi H; Chouin N; Bernhardt P; Ferrer L; Bardiès M; Forssell-Aronsson E
    Cancer Biother Radiopharm; 2009 Aug; 24(4):461-7. PubMed ID: 19694581
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fano cavity test for electron Monte Carlo transport algorithms in magnetic fields: comparison between EGSnrc, PENELOPE, MCNP6 and Geant4.
    Lee J; Lee J; Ryu D; Lee H; Ye SJ
    Phys Med Biol; 2018 Oct; 63(19):195013. PubMed ID: 30183683
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Energy-loss straggling algorithms for Monte Carlo electron transport.
    Chibani O
    Med Phys; 2002 Oct; 29(10):2374-83. PubMed ID: 12408312
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The accuracy of EGSnrc, Geant4 and PENELOPE Monte Carlo systems for the simulation of electron scatter in external beam radiotherapy.
    Faddegon BA; Kawrakow I; Kubyshin Y; Perl J; Sempau J; Urban L
    Phys Med Biol; 2009 Oct; 54(20):6151-63. PubMed ID: 19779217
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Benchmarking of Monte Carlo simulation of bremsstrahlung from thick targets at radiotherapy energies.
    Faddegon BA; Asai M; Perl J; Ross C; Sempau J; Tinslay J; Salvat F
    Med Phys; 2008 Oct; 35(10):4308-17. PubMed ID: 18975676
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monte Carlo dose calculations in homogeneous media and at interfaces: a comparison between GEPTS, EGSnrc, MCNP, and measurements.
    Chibani O; Li XA
    Med Phys; 2002 May; 29(5):835-47. PubMed ID: 12033580
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of GATE/GEANT4 with EGSnrc and MCNP for electron dose calculations at energies between 15 keV and 20 MeV.
    Maigne L; Perrot Y; Schaart DR; Donnarieix D; Breton V
    Phys Med Biol; 2011 Feb; 56(3):811-27. PubMed ID: 21239846
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dual scattering foil design for poly-energetic electron beams.
    Kainz KK; Antolak JA; Almond PR; Bloch CD; Hogstrom KR
    Phys Med Biol; 2005 Mar; 50(5):755-67. PubMed ID: 15798252
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calculation of electron and isotopes dose point kernels with FLUKA Monte Carlo code for dosimetry in nuclear medicine therapy.
    Botta F; Mairani A; Battistoni G; Cremonesi M; Di Dia A; Fassò A; Ferrari A; Ferrari M; Paganelli G; Pedroli G; Valente M
    Med Phys; 2011 Jul; 38(7):3944-54. PubMed ID: 21858991
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accuracy of the photon and electron physics in GEANT4 for radiotherapy applications.
    Poon E; Verhaegen F
    Med Phys; 2005 Jun; 32(6):1696-711. PubMed ID: 16013728
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calculation of photon energy deposition kernels and electron dose point kernels in water.
    Mainegra-Hing E; Rogers DW; Kawrakow I
    Med Phys; 2005 Mar; 32(3):685-99. PubMed ID: 15839340
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Geant4-DNA track-structure simulations for gold nanoparticles: The importance of electron discrete models in nanometer volumes.
    Sakata D; Kyriakou I; Okada S; Tran HN; Lampe N; Guatelli S; Bordage MC; Ivanchenko V; Murakami K; Sasaki T; Emfietzoglou D; Incerti S
    Med Phys; 2018 May; 45(5):2230-2242. PubMed ID: 29480947
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bone and mucosal dosimetry in skin radiation therapy: a Monte Carlo study using kilovoltage photon and megavoltage electron beams.
    Chow JC; Jiang R
    Phys Med Biol; 2012 Jun; 57(12):3885-99. PubMed ID: 22642985
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of kQmsr,Q0fmsr,fref factors for ion chambers used in the calibration of Leksell Gamma Knife Perfexion model using EGSnrc and PENELOPE Monte Carlo codes.
    Mirzakhanian L; Benmakhlouf H; Tessier F; Seuntjens J
    Med Phys; 2018 Apr; 45(4):1748-1757. PubMed ID: 29468677
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extension of PENELOPE to protons: simulation of nuclear reactions and benchmark with Geant4.
    Sterpin E; Sorriaux J; Vynckier S
    Med Phys; 2013 Nov; 40(11):111705. PubMed ID: 24320413
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Geant4 physics list comparison for the simulation of phase-contrast mammography (XPulse project).
    Beaudoux V; Blin G; Barbrel B; Kantor G; Zacharatou C
    Phys Med; 2019 Apr; 60():66-75. PubMed ID: 31000088
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.