These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 26061028)

  • 81. Superhydrophobic polypropylene sorbent derived from discarded face masks: A highly efficient adsorbent for oil spill sorbent.
    Park S; Kim Y; Lee W; Nam C
    Chemosphere; 2022 Sep; 303(Pt 3):135186. PubMed ID: 35660399
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Adsorption of phthalic acid esters (PAEs) by amphiphilic polypropylene nonwoven from aqueous solution: the study of hydrophilic and hydrophobic microdomain.
    Zhou X; Wei J; Zhang H; Liu K; Wang H
    J Hazard Mater; 2014 May; 273():61-9. PubMed ID: 24721695
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Superamphiphilic Janus fabric.
    Lim HS; Park SH; Koo SH; Kwark YJ; Thomas EL; Jeong Y; Cho JH
    Langmuir; 2010 Dec; 26(24):19159-62. PubMed ID: 21073162
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Superhydrophobic Polypropylene Functionalized with Nanoparticles for Efficient Fast Static and Dynamic Separation of Spilled Oil from Water.
    Baig N; Saleh TA
    Glob Chall; 2019 Aug; 3(8):1800115. PubMed ID: 31565391
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Preparation of polypropylene superhydrophobic surface and its blood compatibility.
    Hou X; Wang X; Zhu Q; Bao J; Mao C; Jiang L; Shen J
    Colloids Surf B Biointerfaces; 2010 Oct; 80(2):247-50. PubMed ID: 20630719
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Rapid and Stable Plasma Transformation of Polyester Fabrics for Highly Efficient Oil-Water Separation.
    Sun Y; Ouyang B; Rawat RS; Chen Z
    Glob Chall; 2020 Jul; 4(7):1900095. PubMed ID: 32642075
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Commercial Janus Fabrics as Reusable Facemask Materials: A Balance of Water Repellency, Filtration Efficiency, Breathability, and Reusability.
    Cheng S; Hao W; Wang Y; Wang Y; Yang S
    ACS Appl Mater Interfaces; 2022 Jul; 14(28):32579-32589. PubMed ID: 35794731
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Transformation of a simple plastic into a superhydrophobic surface.
    Erbil HY; Demirel AL; Avci Y; Mert O
    Science; 2003 Feb; 299(5611):1377-80. PubMed ID: 12610300
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Control of microfluidic flow in amphiphilic fabrics.
    Owens TL; Leisen J; Beckham HW; Breedveld V
    ACS Appl Mater Interfaces; 2011 Oct; 3(10):3796-803. PubMed ID: 21942403
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Durability and restoring of superhydrophobic properties in silica-based coatings.
    Mahadik SA; Fernando PD; Hegade ND; Wagh PB; Gupta SC
    J Colloid Interface Sci; 2013 Sep; 405():262-8. PubMed ID: 23746435
    [TBL] [Abstract][Full Text] [Related]  

  • 91. A facile dip-coating process for preparing highly durable superhydrophobic surface with multi-scale structures on paint films.
    Cui Z; Yin L; Wang Q; Ding J; Chen Q
    J Colloid Interface Sci; 2009 Sep; 337(2):531-7. PubMed ID: 19552913
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Chemically stable and mechanically durable superamphiphobic aluminum surface with a micro/nanoscale binary structure.
    Peng S; Yang X; Tian D; Deng W
    ACS Appl Mater Interfaces; 2014 Sep; 6(17):15188-97. PubMed ID: 25116143
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Simple and cost-effective fabrication of highly flexible, transparent superhydrophobic films with hierarchical surface design.
    Kim TH; Ha SH; Jang NS; Kim J; Kim JH; Park JK; Lee DW; Lee J; Kim SH; Kim JM
    ACS Appl Mater Interfaces; 2015 Mar; 7(9):5289-95. PubMed ID: 25688451
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Improving the environment for weaned piglets using polypropylene fabrics above the animals in cold periods.
    Dolz N; Babot D; Álvarez-Rodríguez J; Forcada F
    Int J Biometeorol; 2015 Dec; 59(12):1839-47. PubMed ID: 25910465
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Copper nanoparticle decorated non-woven polypropylene fabrics with durable superhydrophobicity and conductivity.
    Zhu S; Kang Z; Wang F; Long Y
    Nanotechnology; 2021 Jan; 32(3):035701. PubMed ID: 33089829
    [TBL] [Abstract][Full Text] [Related]  

  • 96. In situ polymerized superhydrophobic and superoleophilic nanofibrous membranes for gravity driven oil-water separation.
    Tang X; Si Y; Ge J; Ding B; Liu L; Zheng G; Luo W; Yu J
    Nanoscale; 2013 Dec; 5(23):11657-64. PubMed ID: 24100352
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Mussel-inspired one-step copolymerization to engineer hierarchically structured surface with superhydrophobic properties for removing oil from water.
    Huang S
    ACS Appl Mater Interfaces; 2014 Oct; 6(19):17144-50. PubMed ID: 25198145
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Enhanced hydrophobicity of polyurethane via non-solvent induced surface aggregation of silica nanoparticles.
    Seyfi J; Hejazi I; Jafari SH; Khonakdar HA; Simon F
    J Colloid Interface Sci; 2016 Sep; 478():117-26. PubMed ID: 27288577
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Evaluation of polypropylene and poly (butylmethacrylate-co-hydroxyethylmethacrylate) nonwoven material as oil absorbent.
    Zhao J; Xiao C; Xu N
    Environ Sci Pollut Res Int; 2013 Jun; 20(6):4137-45. PubMed ID: 23238599
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Thermoconductive, Moisture-Permeable, and Superhydrophobic Nanofibrous Membranes with Interpenetrated Boron Nitride Network for Personal Cooling Fabrics.
    Yu X; Li Y; Wang X; Si Y; Yu J; Ding B
    ACS Appl Mater Interfaces; 2020 Jul; 12(28):32078-32089. PubMed ID: 32609492
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.