These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

305 related articles for article (PubMed ID: 26061169)

  • 41. Titanium dioxide nanoparticles affect the toxicity of silver nanoparticles in common carp (Cyprinus carpio).
    Haghighat F; Kim Y; Sourinejad I; Yu IJ; Johari SA
    Chemosphere; 2021 Jan; 262():127805. PubMed ID: 32750593
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Genetic and systemic toxicity induced by silver and copper oxide nanoparticles, and their mixture in Clarias gariepinus (Burchell, 1822).
    Ogunsuyi OI; Fadoju OM; Akanni OO; Alabi OA; Alimba CG; Cambier S; Eswara S; Gutleb AC; Adaramoye OA; Bakare AA
    Environ Sci Pollut Res Int; 2019 Sep; 26(26):27470-27481. PubMed ID: 31332682
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Bivalve molluscs as a unique target group for nanoparticle toxicity.
    Canesi L; Ciacci C; Fabbri R; Marcomini A; Pojana G; Gallo G
    Mar Environ Res; 2012 May; 76():16-21. PubMed ID: 21767873
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effects of silver nanoparticles and ions on a co-culture model for the gastrointestinal epithelium.
    Georgantzopoulou A; Serchi T; Cambier S; Leclercq CC; Renaut J; Shao J; Kruszewski M; Lentzen E; Grysan P; Eswara S; Audinot JN; Contal S; Ziebel J; Guignard C; Hoffmann L; Murk AJ; Gutleb AC
    Part Fibre Toxicol; 2016 Feb; 13():9. PubMed ID: 26888332
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Mechanism of silver nanoparticle toxicity is dependent on dissolved silver and surface coating in Caenorhabditis elegans.
    Yang X; Gondikas AP; Marinakos SM; Auffan M; Liu J; Hsu-Kim H; Meyer JN
    Environ Sci Technol; 2012 Jan; 46(2):1119-27. PubMed ID: 22148238
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Cytotoxicity and genotoxicity of silver nanoparticles of different sizes in CHO-K1 and CHO-XRS5 cell lines.
    Souza TA; Franchi LP; Rosa LR; da Veiga MA; Takahashi CS
    Mutat Res Genet Toxicol Environ Mutagen; 2016 Jan; 795():70-83. PubMed ID: 26774669
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Toxicity of silver nanoparticles and ionic silver: Comparison of adverse effects and potential toxicity mechanisms in the freshwater clam Sphaerium corneum.
    Völker C; Kämpken I; Boedicker C; Oehlmann J; Oetken M
    Nanotoxicology; 2015; 9(6):677-85. PubMed ID: 25268182
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Immune responses, DNA damage and ultrastructural alterations of gills in the marine mussel Lithophaga lithophaga exposed to CuO nanoparticles.
    Essawy AE; Sherif SSE; Osman GY; Morshedy RME; Al-Nasser AS; Sheir SK
    Environ Sci Pollut Res Int; 2022 Mar; 29(11):15800-15815. PubMed ID: 34632550
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Immunomodulation by different types of N-oxides in the hemocytes of the marine bivalve Mytilus galloprovincialis.
    Ciacci C; Canonico B; Bilaniĉovă D; Fabbri R; Cortese K; Gallo G; Marcomini A; Pojana G; Canesi L
    PLoS One; 2012; 7(5):e36937. PubMed ID: 22606310
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A marine mesocosm study on the environmental fate of silver nanoparticles and toxicity effects on two endobenthic species: the ragworm Hediste diversicolor and the bivalve mollusc Scrobicularia plana.
    Buffet PE; Zalouk-Vergnoux A; Châtel A; Berthet B; Métais I; Perrein-Ettajani H; Poirier L; Luna-Acosta A; Thomas-Guyon H; Risso-de Faverney C; Guibbolini M; Gilliland D; Valsami-Jones E; Mouneyrac C
    Sci Total Environ; 2014 Feb; 470-471():1151-9. PubMed ID: 24246938
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Transcriptomic approach: A promising tool for rapid screening nanomaterial-mediated toxicity in the marine bivalve Mytilus edulis-Application to copper oxide nanoparticles.
    Châtel A; Lièvre C; Barrick A; Bruneau M; Mouneyrac C
    Comp Biochem Physiol C Toxicol Pharmacol; 2018 Feb; 205():26-33. PubMed ID: 29382575
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Lysosomal responses to different gold forms (nanoparticles, aqueous, bulk) in mussel digestive cells: a trade-off between the toxicity of the capping agent and form, size and exposure concentration.
    Jimeno-Romero A; Izagirre U; Gilliland D; Warley A; Cajaraville MP; Marigómez I; Soto M
    Nanotoxicology; 2017 Jun; 11(5):658-670. PubMed ID: 28758565
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Comparison of acute to chronic ratios between silver and gold nanoparticles, using Ceriodaphnia dubia.
    Harmon AR; Kennedy AJ; Laird JG; Bednar AJ; Steevens JA
    Nanotoxicology; 2017; 11(9-10):1127-1139. PubMed ID: 29192531
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Toxicity and accumulation of silver nanoparticles during development of the marine polychaete Platynereis dumerilii.
    García-Alonso J; Rodriguez-Sanchez N; Misra SK; Valsami-Jones E; Croteau MN; Luoma SN; Rainbow PS
    Sci Total Environ; 2014 Apr; 476-477():688-95. PubMed ID: 24514586
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Pilot study on effects of nanoparticle exposure on Crassostrea virginica hemocyte phagocytosis.
    Abbott Chalew TE; Galloway JF; Graczyk TK
    Mar Pollut Bull; 2012 Oct; 64(10):2251-3. PubMed ID: 22835473
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Silver nanoparticles induced heat shock protein 70, oxidative stress and apoptosis in Drosophila melanogaster.
    Ahamed M; Posgai R; Gorey TJ; Nielsen M; Hussain SM; Rowe JJ
    Toxicol Appl Pharmacol; 2010 Feb; 242(3):263-9. PubMed ID: 19874832
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Developmental and reproductive toxicity of PVP/PEI-coated silver nanoparticles to zebrafish.
    Orbea A; González-Soto N; Lacave JM; Barrio I; Cajaraville MP
    Comp Biochem Physiol C Toxicol Pharmacol; 2017 Sep; 199():59-68. PubMed ID: 28274763
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Chemical transformation of silver nanoparticles in aquatic environments: Mechanism, morphology and toxicity.
    Zhang W; Xiao B; Fang T
    Chemosphere; 2018 Jan; 191():324-334. PubMed ID: 29045933
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Cytotoxicity and genotoxicity of silver nanoparticles in the human lung cancer cell line, A549.
    Foldbjerg R; Dang DA; Autrup H
    Arch Toxicol; 2011 Jul; 85(7):743-50. PubMed ID: 20428844
    [TBL] [Abstract][Full Text] [Related]  

  • 60. In vitro cytotoxicity of silver nanoparticles and zinc oxide nanoparticles to human epithelial colorectal adenocarcinoma (Caco-2) cells.
    Song Y; Guan R; Lyu F; Kang T; Wu Y; Chen X
    Mutat Res; 2014 Nov; 769():113-8. PubMed ID: 25771730
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.