BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

385 related articles for article (PubMed ID: 26061198)

  • 21. Using gold nanoclusters as selective luminescent probes for phosphate-containing metabolites.
    Li PH; Lin JY; Chen CT; Ciou WR; Chan PH; Luo L; Hsu HY; Diau EW; Chen YC
    Anal Chem; 2012 Jul; 84(13):5484-8. PubMed ID: 22762258
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Chemical etching of pH-sensitive aggregation-induced emission-active gold nanoclusters for ultra-sensitive detection of cysteine.
    Wang J; Lin X; Su L; Yin J; Shu T; Zhang X
    Nanoscale; 2018 Dec; 11(1):294-300. PubMed ID: 30534733
    [TBL] [Abstract][Full Text] [Related]  

  • 23. White-emitting Protein-Metal Nanocluster Phosphors for Highly Performing Biohybrid Light-Emitting Diodes.
    Aires A; Fernández-Luna V; Fernández-Cestau J; Costa RD; Cortajarena AL
    Nano Lett; 2020 Apr; 20(4):2710-2716. PubMed ID: 32155079
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Highly luminescent gold nanocluster assemblies for bioimaging in living organisms.
    Yu F; Cao Z; He S; Xiang H; Zhao G; Yang L; Liu H
    Chem Commun (Camb); 2022 Jan; 58(6):811-814. PubMed ID: 34928276
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Stability and electrostatics of mercaptoundecanoic acid-capped gold nanoparticles with varying counterion size.
    Laaksonen T; Ahonen P; Johans C; Kontturi K
    Chemphyschem; 2006 Oct; 7(10):2143-9. PubMed ID: 16969881
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ligand-stabilized Au13Cu(x) (x = 2, 4, 8) bimetallic nanoclusters: ligand engineering to control the exposure of metal sites.
    Yang H; Wang Y; Lei J; Shi L; Wu X; Mäkinen V; Lin S; Tang Z; He J; Häkkinen H; Zheng L; Zheng N
    J Am Chem Soc; 2013 Jul; 135(26):9568-71. PubMed ID: 23789787
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Atomically monodispersed and fluorescent sub-nanometer gold clusters created by biomolecule-assisted etching of nanometer-sized gold particles and rods.
    Zhou R; Shi M; Chen X; Wang M; Chen H
    Chemistry; 2009; 15(19):4944-51. PubMed ID: 19301340
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Precursor engineering and controlled conversion for the synthesis of monodisperse thiolate-protected metal nanoclusters.
    Yu Y; Yao Q; Luo Z; Yuan X; Lee JY; Xie J
    Nanoscale; 2013 Jun; 5(11):4606-20. PubMed ID: 23598432
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Synthesis, structural characterization, and theoretical studies of gold(I) and gold(I)-gold(III) thiolate complexes: quenching of gold(I) thiolate luminescence.
    Bardají M; Calhorda MJ; Costa PJ; Jones PG; Laguna A; Reyes Pérez M; Villacampa MD
    Inorg Chem; 2006 Feb; 45(3):1059-68. PubMed ID: 16441114
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Size-dependent excited state behavior of glutathione-capped gold clusters and their light-harvesting capacity.
    Stamplecoskie KG; Kamat PV
    J Am Chem Soc; 2014 Aug; 136(31):11093-9. PubMed ID: 25033464
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Surface Dynamics and Ligand-Core Interactions of Quantum Sized Photoluminescent Gold Nanoclusters.
    Lin Y; Charchar P; Christofferson AJ; Thomas MR; Todorova N; Mazo MM; Chen Q; Doutch J; Richardson R; Yarovsky I; Stevens MM
    J Am Chem Soc; 2018 Dec; 140(51):18217-18226. PubMed ID: 30557016
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The effect of ligand-ligand interactions on the formation of photoluminescent gold nanoclusters embedded in Au(i)-thiolate supramolecules.
    Chang HY; Tseng YT; Yuan Z; Chou HL; Chen CH; Hwang BJ; Tsai MC; Chang HT; Huang CC
    Phys Chem Chem Phys; 2017 May; 19(19):12085-12093. PubMed ID: 28443925
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Unexpected Thiols Triggering Photoluminescent Enhancement of Cytidine Stabilized Au Nanoclusters for Sensitive Assays of Glutathione Reductase and Its Inhibitors Screening.
    Jiang H; Su X; Zhang Y; Zhou J; Fang D; Wang X
    Anal Chem; 2016 May; 88(9):4766-71. PubMed ID: 27054760
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Near infrared Ag/Au alloy nanoclusters: tunable photoluminescence and cellular imaging.
    Wang C; Xu L; Xu X; Cheng H; Sun H; Lin Q; Zhang C
    J Colloid Interface Sci; 2014 Feb; 416():274-9. PubMed ID: 24370431
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Well-defined nanoclusters as fluorescent nanosensors: a case study on Au(25) (SG)(18).
    Wu Z; Wang M; Yang J; Zheng X; Cai W; Meng G; Qian H; Wang H; Jin R
    Small; 2012 Jul; 8(13):2028-35. PubMed ID: 22488747
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Designing ligand-enhanced optical absorption of thiolated gold nanoclusters.
    Sementa L; Barcaro G; Dass A; Stener M; Fortunelli A
    Chem Commun (Camb); 2015 May; 51(37):7935-8. PubMed ID: 25866233
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Direct electrochemiluminescence of gold nanoparticles bifunctionalized by luminol analogue-metal complexes in neutral and alkaline media.
    Shu J; Wang W; Cui H
    Chem Commun (Camb); 2015 Jul; 51(57):11366-9. PubMed ID: 25977954
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Chirality and electronic structure of the thiolate-protected Au38 nanocluster.
    Lopez-Acevedo O; Tsunoyama H; Tsukuda T; Häkkinen H; Aikens CM
    J Am Chem Soc; 2010 Jun; 132(23):8210-8. PubMed ID: 20499877
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Racemization of a chiral nanoparticle evidences the flexibility of the gold-thiolate interface.
    Knoppe S; Dolamic I; Bürgi T
    J Am Chem Soc; 2012 Aug; 134(31):13114-20. PubMed ID: 22793992
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Shell-Isolated Assembly of Atomically Precise Nanoclusters on Gold Nanorods for Integrated Plasmonic-Luminescent Nanocomposites.
    Chakraborty A; Dave H; Mondal B; Nonappa ; Khatun E; Pradeep T
    J Phys Chem B; 2022 Mar; 126(8):1842-1851. PubMed ID: 35179896
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.