BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

350 related articles for article (PubMed ID: 26061224)

  • 1. Construction of a robust and sensitive arginine biosensor through ancestral protein reconstruction.
    Whitfield JH; Zhang WH; Herde MK; Clifton BE; Radziejewski J; Janovjak H; Henneberger C; Jackson CJ
    Protein Sci; 2015 Sep; 24(9):1412-22. PubMed ID: 26061224
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ancestral Protein Reconstruction and Circular Permutation for Improving the Stability and Dynamic Range of FRET Sensors.
    Clifton BE; Whitfield JH; Sanchez-Romero I; Herde MK; Henneberger C; Janovjak H; Jackson CJ
    Methods Mol Biol; 2017; 1596():71-87. PubMed ID: 28293881
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering a switch-based biosensor for arginine using a Thermotoga maritima periplasmic binding protein.
    Donaldson T; Iozzino L; Deacon LJ; Billones H; Ausili A; D'Auria S; Dattelbaum JD
    Anal Biochem; 2017 May; 525():60-66. PubMed ID: 28259516
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Designing, construction and characterization of genetically encoded FRET-based nanosensor for real time monitoring of lysine flux in living cells.
    Ameen S; Ahmad M; Mohsin M; Qureshi MI; Ibrahim MM; Abdin MZ; Ahmad A
    J Nanobiotechnology; 2016 Jun; 14(1):49. PubMed ID: 27334743
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Method for Developing Optical Sensors Using a Synthetic Dye-Fluorescent Protein FRET Pair and Computational Modeling and Assessment.
    Mitchell JA; Zhang WH; Herde MK; Henneberger C; Janovjak H; O'Mara ML; Jackson CJ
    Methods Mol Biol; 2017; 1596():89-99. PubMed ID: 28293882
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Construction and optimization of a family of genetically encoded metabolite sensors by semirational protein engineering.
    Deuschle K; Okumoto S; Fehr M; Looger LL; Kozhukh L; Frommer WB
    Protein Sci; 2005 Sep; 14(9):2304-14. PubMed ID: 16131659
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein biosensors based on the principle of fluorescence resonance energy transfer for monitoring cellular dynamics.
    Li IT; Pham E; Truong K
    Biotechnol Lett; 2006 Dec; 28(24):1971-82. PubMed ID: 17021660
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetically encoded FRET-based nanosensor for in vivo measurement of leucine.
    Mohsin M; Abdin MZ; Nischal L; Kardam H; Ahmad A
    Biosens Bioelectron; 2013 Dec; 50():72-7. PubMed ID: 23835220
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ROZA-XL, an improved FRET based biosensor with an increased dynamic range for visualizing zeta associated protein 70 kD (ZAP-70) tyrosine kinase activity in live T cells.
    Cadra S; Gucciardi A; Valignat MP; Theodoly O; Vacaflores A; Houtman JC; Lellouch AC
    Biochem Biophys Res Commun; 2015 Apr; 459(3):405-10. PubMed ID: 25735979
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Real-time functional characterization of cationic amino acid transporters using a new FRET sensor.
    Vanoaica L; Behera A; Camargo SM; Forster IC; Verrey F
    Pflugers Arch; 2016 Apr; 468(4):563-72. PubMed ID: 26555760
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Site-selective dual modification of periplasmic binding proteins for sensing applications.
    Crochet AP; Kabir MM; Francis MB; Paavola CD
    Biosens Bioelectron; 2010 Sep; 26(1):55-61. PubMed ID: 20541393
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetically encoded FRET-based biosensors for multiparameter fluorescence imaging.
    Carlson HJ; Campbell RE
    Curr Opin Biotechnol; 2009 Feb; 20(1):19-27. PubMed ID: 19223167
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent developments of genetically encoded optical sensors for cell biology.
    Bolbat A; Schultz C
    Biol Cell; 2017 Jan; 109(1):1-23. PubMed ID: 27628952
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cell-Based Biosensor to Visualize Nitric Oxide Release from Living Cells for Toxicity Assessment.
    Sato M; Umezawa Y
    Methods Mol Biol; 2021; 2240():57-64. PubMed ID: 33423226
    [TBL] [Abstract][Full Text] [Related]  

  • 15. FÖrster resonance energy transfer (FRET)-based biosensors for biological applications.
    Zhang X; Hu Y; Yang X; Tang Y; Han S; Kang A; Deng H; Chi Y; Zhu D; Lu Y
    Biosens Bioelectron; 2019 Aug; 138():111314. PubMed ID: 31096114
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A practical method for monitoring FRET-based biosensors in living animals using two-photon microscopy.
    Tao W; Rubart M; Ryan J; Xiao X; Qiao C; Hato T; Davidson MW; Dunn KW; Day RN
    Am J Physiol Cell Physiol; 2015 Dec; 309(11):C724-35. PubMed ID: 26333599
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A genetically encoded biosensor for in vitro and in vivo detection of NADP(.).
    Zhao FL; Zhang C; Zhang C; Tang Y; Ye BC
    Biosens Bioelectron; 2016 Mar; 77():901-6. PubMed ID: 26524720
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetically-encoded nanosensor for quantitative monitoring of methionine in bacterial and yeast cells.
    Mohsin M; Ahmad A
    Biosens Bioelectron; 2014 Sep; 59():358-64. PubMed ID: 24752146
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluorescence-based sensing of glucose using engineered glucose/galactose-binding protein: a comparison of fluorescence resonance energy transfer and environmentally sensitive dye labelling strategies.
    Khan F; Gnudi L; Pickup JC
    Biochem Biophys Res Commun; 2008 Jan; 365(1):102-6. PubMed ID: 17976368
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single-Molecule Studies on a FRET Biosensor: Lessons from a Comparison of Fluorescent Protein Equipped versus Dye-Labeled Species.
    Höfig H; Cerminara M; Ritter I; Schöne A; Pohl M; Steffen V; Walter J; Vergara Dal Pont I; Katranidis A; Fitter J
    Molecules; 2018 Nov; 23(12):. PubMed ID: 30486450
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.