These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
43. Biodegradable thermosensitive polymer gel for sustained BMP-2 delivery. Park K J Control Release; 2015 Jul; 209():337. PubMed ID: 26048771 [No Abstract] [Full Text] [Related]
44. Recent advances, and unresolved issues, in the application of computational modelling to the prediction of the biological effects of nanomaterials. Winkler DA Toxicol Appl Pharmacol; 2016 May; 299():96-100. PubMed ID: 26723909 [TBL] [Abstract][Full Text] [Related]
45. Graphene-based nanomaterials for drug delivery and tissue engineering. Goenka S; Sant V; Sant S J Control Release; 2014 Jan; 173():75-88. PubMed ID: 24161530 [TBL] [Abstract][Full Text] [Related]
46. Effect of surface properties on nanoparticle-cell interactions. Verma A; Stellacci F Small; 2010 Jan; 6(1):12-21. PubMed ID: 19844908 [TBL] [Abstract][Full Text] [Related]
47. Progress in biopolymer-based biomaterials and their application in controlled drug delivery. Neffe AT; Wischke C; Racheva M; Lendlein A Expert Rev Med Devices; 2013 Nov; 10(6):813-33. PubMed ID: 24195462 [TBL] [Abstract][Full Text] [Related]
48. Bone tissue engineering using silica-based mesoporous nanobiomaterials:Recent progress. Shadjou N; Hasanzadeh M Mater Sci Eng C Mater Biol Appl; 2015 Oct; 55():401-9. PubMed ID: 26117771 [TBL] [Abstract][Full Text] [Related]
49. Nanotechnology for the diagnosis and treatment of diseases. Azzawi M; Seifalian A; Ahmed W Nanomedicine (Lond); 2016 Aug; 11(16):2025-7. PubMed ID: 27509317 [No Abstract] [Full Text] [Related]
50. Isoniazid conjugated poly(lactide-co-glycolide): long-term controlled drug release and tissue regeneration for bone tuberculosis therapy. Huang D; Li D; Wang T; Shen H; Zhao P; Liu B; You Y; Ma Y; Yang F; Wu D; Wang S Biomaterials; 2015 Jun; 52():417-25. PubMed ID: 25818448 [TBL] [Abstract][Full Text] [Related]
51. Nanostructured porous silicon-polymer-based hybrids: from biosensing to drug delivery. Bonanno LM; Segal E Nanomedicine (Lond); 2011 Dec; 6(10):1755-70. PubMed ID: 22122584 [TBL] [Abstract][Full Text] [Related]
52. How are we applying nanogel composites in biomedicine? Kar M; Molina M; Calderón M Nanomedicine (Lond); 2017 Jul; 12(14):1627-1630. PubMed ID: 28635377 [No Abstract] [Full Text] [Related]
55. Nanotechnology for neurodegenerative disorders. Re F; Gregori M; Masserini M Nanomedicine; 2012 Sep; 8 Suppl 1():S51-8. PubMed ID: 22640910 [TBL] [Abstract][Full Text] [Related]
56. Micro- and nanofabrication methods in nanotechnological medical and pharmaceutical devices. Betancourt T; Brannon-Peppas L Int J Nanomedicine; 2006; 1(4):483-95. PubMed ID: 17722281 [TBL] [Abstract][Full Text] [Related]
58. Marine polysaccharide-based nanomaterials as a novel source of nanobiotechnological applications. Manivasagan P; Oh J Int J Biol Macromol; 2016 Jan; 82():315-27. PubMed ID: 26523336 [TBL] [Abstract][Full Text] [Related]
59. Growth factor delivery for bone tissue repair: an update. Varkey M; Gittens SA; Uludag H Expert Opin Drug Deliv; 2004 Nov; 1(1):19-36. PubMed ID: 16296718 [TBL] [Abstract][Full Text] [Related]
60. Drug delivery systems based on nucleic acid nanostructures. de Vries JW; Zhang F; Herrmann A J Control Release; 2013 Dec; 172(2):467-83. PubMed ID: 23742878 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]