These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 26061407)

  • 1. Quantity, Quality, and Availability of Waste Heat from United States Thermal Power Generation.
    Gingerich DB; Mauter MS
    Environ Sci Technol; 2015 Jul; 49(14):8297-306. PubMed ID: 26061407
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electricity generation: options for reduction in carbon emissions.
    Whittington HW
    Philos Trans A Math Phys Eng Sci; 2002 Aug; 360(1797):1653-68. PubMed ID: 12460490
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An integrated appraisal of energy recovery options in the United Kingdom using solid recovered fuel derived from municipal solid waste.
    Garg A; Smith R; Hill D; Longhurst PJ; Pollard SJ; Simms NJ
    Waste Manag; 2009 Aug; 29(8):2289-97. PubMed ID: 19443201
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Environmental implications of United States coal exports: a comparative life cycle assessment of future power system scenarios.
    Bohnengel B; Patiño-Echeverri D; Bergerson J
    Environ Sci Technol; 2014 Aug; 48(16):9908-16. PubMed ID: 25025127
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reassessing the Efficiency Penalty from Carbon Capture in Coal-Fired Power Plants.
    Supekar SD; Skerlos SJ
    Environ Sci Technol; 2015 Oct; 49(20):12576-84. PubMed ID: 26422409
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Near-term implications of a ban on new coal-fired power plants in the United States.
    Newcomer A; Apt J
    Environ Sci Technol; 2009 Jun; 43(11):3995-4001. PubMed ID: 19569321
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Co-gasification of solid waste and lignite - a case study for Western Macedonia.
    Koukouzas N; Katsiadakis A; Karlopoulos E; Kakaras E
    Waste Manag; 2008; 28(7):1263-75. PubMed ID: 17631995
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Opportunities for Decarbonizing Existing U.S. Coal-Fired Power Plants via CO2 Capture, Utilization and Storage.
    Zhai H; Ou Y; Rubin ES
    Environ Sci Technol; 2015 Jul; 49(13):7571-9. PubMed ID: 26023722
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Energy needs versus environmental pollution: a reconciliation?
    Green L
    Science; 1967 Jun; 156(3781):1448-50. PubMed ID: 5611018
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Economic evaluation of improvements in a waste-to-energy combined heat and power plant.
    Eboh FC; Andersson BÅ; Richards T
    Waste Manag; 2019 Dec; 100():75-83. PubMed ID: 31525675
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A dynamic model to assess tradeoffs in power production and riverine ecosystem protection.
    Miara A; Vörösmarty CJ
    Environ Sci Process Impacts; 2013 Jun; 15(6):1113-26. PubMed ID: 23636670
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of waste management strategies and waste generation factors for thermal power plant sector wastes in Turkey.
    Demir C; Yetiş Ü; Ünlü K
    Waste Manag Res; 2019 Mar; 37(3):210-218. PubMed ID: 30355270
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of the US EPA's determination of the role for CO2 capture and storage in new fossil fuel-fired power plants.
    Clark VR; Herzog HJ
    Environ Sci Technol; 2014 Jul; 48(14):7723-9. PubMed ID: 24960207
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Economic assessment and energy model scenarios of municipal solid waste incineration and gas turbine hybrid dual-fueled cycles in Thailand.
    Udomsri S; Martin AR; Fransson TH
    Waste Manag; 2010 Jul; 30(7):1414-22. PubMed ID: 20207531
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of high temperature phase change materials for improved efficiency in waste-to-energy plants.
    Dal Magro F; Xu H; Nardin G; Romagnoli A
    Waste Manag; 2018 Mar; 73():322-331. PubMed ID: 28668601
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Implications of near-term coal power plant retirement for SO2 and NOX and life cycle GHG emissions.
    Venkatesh A; Jaramillo P; Griffin WM; Matthews HS
    Environ Sci Technol; 2012 Sep; 46(18):9838-45. PubMed ID: 22888978
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Energetic valorization of wood waste: estimation of the reduction in CO2 emissions.
    Vanneste J; Van Gerven T; Vander Putten E; Van der Bruggen B; Helsen L
    Sci Total Environ; 2011 Sep; 409(19):3595-602. PubMed ID: 21719072
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Energy efficiency in waste-to-energy and its relevance with regard to climate control.
    Ragossnig AM; Wartha C; Kirchner A
    Waste Manag Res; 2008 Feb; 26(1):70-7. PubMed ID: 18338703
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Waste to energy efficiency improvements: Integration with solar thermal energy.
    Mendecka B; Lombardi L; Gladysz P
    Waste Manag Res; 2019 Apr; 37(4):419-434. PubMed ID: 30848718
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Technical assessment of discarded tires gasification as alternative technology for electricity generation.
    Machin EB; Pedroso DT; de Carvalho JA
    Waste Manag; 2017 Oct; 68():412-420. PubMed ID: 28712598
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.