These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 26061616)
21. Rapid, one-pot procedure to synthesise Djoumessi D; Laprise-Pelletier M; Chevallier P; Lagueux J; Côté MF; Fortin MA J Mater Chem B; 2015 Mar; 3(10):2192-2205. PubMed ID: 32262387 [TBL] [Abstract][Full Text] [Related]
22. Effect of polyethylene glycol (PEG) chain organization on the physicochemical properties of poly(D, L-lactide) (PLA) based nanoparticles. Essa S; Rabanel JM; Hildgen P Eur J Pharm Biopharm; 2010 Jun; 75(2):96-106. PubMed ID: 20211727 [TBL] [Abstract][Full Text] [Related]
23. Effect of polymer architecture on surface properties, plasma protein adsorption, and cellular interactions of pegylated nanoparticles. Sant S; Poulin S; Hildgen P J Biomed Mater Res A; 2008 Dec; 87(4):885-95. PubMed ID: 18228249 [TBL] [Abstract][Full Text] [Related]
24. Effect of molecular weight on synthesis and surface morphology of high-density poly(ethylene glycol) grafted layers. Zdyrko B; Varshney SK; Luzinov I Langmuir; 2004 Aug; 20(16):6727-35. PubMed ID: 15274578 [TBL] [Abstract][Full Text] [Related]
25. Effect of aqueous solubility of grafted moiety on the physicochemical properties of poly(d,l-lactide) (PLA) based nanoparticles. Essa S; Rabanel JM; Hildgen P Int J Pharm; 2010 Mar; 388(1-2):263-73. PubMed ID: 20060450 [TBL] [Abstract][Full Text] [Related]
26. Tumor Microenvironment-Responsive Shell/Core Composite Nanoparticles for Enhanced Stability and Antitumor Efficiency Based on a pH-Triggered Charge-Reversal Mechanism. Luo Q; Shi W; Wang P; Zhang Y; Meng J; Zhang L Pharmaceutics; 2021 Jun; 13(6):. PubMed ID: 34208641 [TBL] [Abstract][Full Text] [Related]
27. A non-sacrificial method for the quantification of poly(ethylene glycol) grafting density on gold nanoparticles for applications in nanomedicine. Lu J; Xue Y; Shi R; Kang J; Zhao CY; Zhang NN; Wang CY; Lu ZY; Liu K Chem Sci; 2019 Feb; 10(7):2067-2074. PubMed ID: 30842864 [TBL] [Abstract][Full Text] [Related]
28. Highly water-dispersible PEG surface modified ultra small superparamagnetic iron oxide nanoparticles useful for target-specific biomedical applications. Park JY; Daksha P; Lee GH; Woo S; Chang Y Nanotechnology; 2008 Sep; 19(36):365603. PubMed ID: 21828874 [TBL] [Abstract][Full Text] [Related]
29. Multifunctional PEG encapsulated Fe Wang H; Shen J; Cao G; Gai Z; Hong K; Debata PR; Banerjee P; Zhou S J Mater Chem B; 2013 Dec; 1(45):6225-6234. PubMed ID: 32261695 [TBL] [Abstract][Full Text] [Related]
30. Hydrophilization of Magnetic Nanoparticles with Modified Alternating Copolymers. Part 2: Behavior in solution. Shtykova EV; Malyutin A; Dyke J; Stein B; Konarev PV; Dragnea B; Svergun DI; Bronstein LM J Phys Chem C Nanomater Interfaces; 2010 Dec; 114(50):21908-21913. PubMed ID: 21243096 [TBL] [Abstract][Full Text] [Related]
31. Preparation and Characterization of Methylene Blue-Incorporated Folate-Functionalized Fe3O4/Mesoporous Silica Core/Shell Magnetic Nanoparticles. Zhao X; Zhao H; Chen Z; Zhang D; Lan M J Nanosci Nanotechnol; 2015 Jul; 15(7):4976-83. PubMed ID: 26373064 [TBL] [Abstract][Full Text] [Related]
32. Shedding light on surface exposition of poly(ethylene glycol) and folate targeting units on nanoparticles of poly(ε-caprolactone) diblock copolymers: Beyond a paradigm. Venuta A; Moret F; Dal Poggetto G; Esposito D; Fraix A; Avitabile C; Ungaro F; Malinconico M; Sortino S; Romanelli A; Laurienzo P; Reddi E; Quaglia F Eur J Pharm Sci; 2018 Jan; 111():177-185. PubMed ID: 28966100 [TBL] [Abstract][Full Text] [Related]
33. Auto-degradable and biocompatible superparamagnetic iron oxide nanoparticles/polypeptides colloidal polyion complexes with high density of magnetic material. Wang B; Sandre O; Wang K; Shi H; Xiong K; Huang YB; Wu T; Yan M; Courtois J Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109920. PubMed ID: 31500039 [TBL] [Abstract][Full Text] [Related]
34. Graft copolymer nanoparticles with pH and reduction dual-induced disassemblable property for enhanced intracellular curcumin release. Zhao J; Liu J; Xu S; Zhou J; Han S; Deng L; Zhang J; Liu J; Meng A; Dong A ACS Appl Mater Interfaces; 2013 Dec; 5(24):13216-26. PubMed ID: 24313273 [TBL] [Abstract][Full Text] [Related]
35. Self-assembly of iron oxide-poly(ethylene glycol) core-shell nanoparticles at liquid-liquid interfaces. Isa L; Amstad E; Textor M; Reimhult E Chimia (Aarau); 2010; 64(3):145-9. PubMed ID: 21140907 [TBL] [Abstract][Full Text] [Related]
36. Convenient synthesis of heterobifunctional poly(ethylene glycol) suitable for the functionalization of iron oxide nanoparticles for biomedical applications. Passemard S; Staedler D; Učňová L; Schneiter GS; Kong P; Bonacina L; Juillerat-Jeanneret L; Gerber-Lemaire S Bioorg Med Chem Lett; 2013 Sep; 23(17):5006-10. PubMed ID: 23860589 [TBL] [Abstract][Full Text] [Related]
37. Cytotoxicity of Paclitaxel in biodegradable self-assembled core-shell poly(lactide-co-glycolide ethylene oxide fumarate) nanoparticles. He X; Ma J; Mercado AE; Xu W; Jabbari E Pharm Res; 2008 Jul; 25(7):1552-62. PubMed ID: 18196205 [TBL] [Abstract][Full Text] [Related]
38. Click chemistry grafting of poly(ethylene glycol) brushes to alkyne-functionalized pseudobrushes. Ostaci RV; Damiron D; Grohens Y; Léger L; Drockenmuller E Langmuir; 2010 Jan; 26(2):1304-10. PubMed ID: 19785428 [TBL] [Abstract][Full Text] [Related]
39. Innovative Magnetic Nanoparticles for PET/MRI Bimodal Imaging. Thomas G; Boudon J; Maurizi L; Moreau M; Walker P; Severin I; Oudot A; Goze C; Poty S; Vrigneaud JM; Demoisson F; Denat F; Brunotte F; Millot N ACS Omega; 2019 Feb; 4(2):2637-2648. PubMed ID: 31459499 [TBL] [Abstract][Full Text] [Related]
40. Physisorption of Poly(ethylene glycol) on Inorganic Nanoparticles. Xue Y; Gao HM; Yu L; Zhang NN; Kang J; Wang CY; Lu ZY; Whittaker AK; Liu K ACS Nano; 2022 Apr; 16(4):6634-6645. PubMed ID: 35352548 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]