These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
175 related articles for article (PubMed ID: 26061742)
1. Origin of the low thermal isomerization rate of rhodopsin chromophore. Yanagawa M; Kojima K; Yamashita T; Imamoto Y; Matsuyama T; Nakanishi K; Yamano Y; Wada A; Sako Y; Shichida Y Sci Rep; 2015 Jun; 5():11081. PubMed ID: 26061742 [TBL] [Abstract][Full Text] [Related]
2. Kinetics of thermal activation of an ultraviolet cone pigment. Mooney V; Sekharan S; Liu J; Guo Y; Batista VS; Yan EC J Am Chem Soc; 2015 Jan; 137(1):307-13. PubMed ID: 25514632 [TBL] [Abstract][Full Text] [Related]
3. Protein fluctuations as the possible origin of the thermal activation of rod photoreceptors in the dark. Lórenz-Fonfría VA; Furutani Y; Ota T; Ido K; Kandori H J Am Chem Soc; 2010 Apr; 132(16):5693-703. PubMed ID: 20356096 [TBL] [Abstract][Full Text] [Related]
4. Adaptation of cone pigments found in green rods for scotopic vision through a single amino acid mutation. Kojima K; Matsutani Y; Yamashita T; Yanagawa M; Imamoto Y; Yamano Y; Wada A; Hisatomi O; Nishikawa K; Sakurai K; Shichida Y Proc Natl Acad Sci U S A; 2017 May; 114(21):5437-5442. PubMed ID: 28484015 [TBL] [Abstract][Full Text] [Related]
7. Spontaneous activation of visual pigments in relation to openness/closedness of chromophore-binding pocket. Yue WW; Frederiksen R; Ren X; Luo DG; Yamashita T; Shichida Y; Cornwall MC; Yau KW Elife; 2017 Feb; 6():. PubMed ID: 28186874 [TBL] [Abstract][Full Text] [Related]
8. Primary events in dim light vision: a chemical and spectroscopic approach toward understanding protein/chromophore interactions in rhodopsin. Fishkin N; Berova N; Nakanishi K Chem Rec; 2004; 4(2):120-35. PubMed ID: 15073879 [TBL] [Abstract][Full Text] [Related]
9. Molecular properties of rod and cone visual pigments from purified chicken cone pigments to mouse rhodopsin in situ. Imai H; Kuwayama S; Onishi A; Morizumi T; Chisaka O; Shichida Y Photochem Photobiol Sci; 2005 Sep; 4(9):667-74. PubMed ID: 16121275 [TBL] [Abstract][Full Text] [Related]
10. The steric trigger in rhodopsin activation. Shieh T; Han M; Sakmar TP; Smith SO J Mol Biol; 1997 Jun; 269(3):373-84. PubMed ID: 9199406 [TBL] [Abstract][Full Text] [Related]
11. Thermal decay of rhodopsin: role of hydrogen bonds in thermal isomerization of 11-cis retinal in the binding site and hydrolysis of protonated Schiff base. Liu J; Liu MY; Nguyen JB; Bhagat A; Mooney V; Yan EC J Am Chem Soc; 2009 Jul; 131(25):8750-1. PubMed ID: 19505100 [TBL] [Abstract][Full Text] [Related]
12. Hydrophobic amino acids at the cytoplasmic ends of helices 3 and 6 of rhodopsin conjointly modulate transducin activation. Bosch-Presegué L; Iarriccio L; Aguilà M; Toledo D; Ramon E; Cordomí A; Garriga P Arch Biochem Biophys; 2011 Feb; 506(2):142-9. PubMed ID: 21114958 [TBL] [Abstract][Full Text] [Related]
13. Mechanism of rhodopsin activation as examined with ring-constrained retinal analogs and the crystal structure of the ground state protein. Jang GF; Kuksa V; Filipek S; Bartl F; Ritter E; Gelb MH; Hofmann KP; Palczewski K J Biol Chem; 2001 Jul; 276(28):26148-53. PubMed ID: 11316815 [TBL] [Abstract][Full Text] [Related]
14. On the molecular origin of photoreceptor noise. Barlow RB; Birge RR; Kaplan E; Tallent JR Nature; 1993 Nov; 366(6450):64-6. PubMed ID: 8232538 [TBL] [Abstract][Full Text] [Related]
15. Coupling of retinal isomerization to the activation of rhodopsin. Patel AB; Crocker E; Eilers M; Hirshfeld A; Sheves M; Smith SO Proc Natl Acad Sci U S A; 2004 Jul; 101(27):10048-53. PubMed ID: 15220479 [TBL] [Abstract][Full Text] [Related]
16. Modulation of thermal noise and spectral sensitivity in Lake Baikal cottoid fish rhodopsins. Luk HL; Bhattacharyya N; Montisci F; Morrow JM; Melaccio F; Wada A; Sheves M; Fanelli F; Chang BS; Olivucci M Sci Rep; 2016 Dec; 6():38425. PubMed ID: 27934935 [TBL] [Abstract][Full Text] [Related]
17. Amino acid residues responsible for the meta-III decay rates in rod and cone visual pigments. Kuwayama S; Imai H; Morizumi T; Shichida Y Biochemistry; 2005 Feb; 44(6):2208-15. PubMed ID: 15697246 [TBL] [Abstract][Full Text] [Related]
18. Comparison of the isomerization mechanisms of human melanopsin and invertebrate and vertebrate rhodopsins. Rinaldi S; Melaccio F; Gozem S; Fanelli F; Olivucci M Proc Natl Acad Sci U S A; 2014 Feb; 111(5):1714-9. PubMed ID: 24449866 [TBL] [Abstract][Full Text] [Related]
19. Mechanism of G-protein activation by rhodopsin. Shichida Y; Morizumi T Photochem Photobiol; 2007; 83(1):70-5. PubMed ID: 16800722 [TBL] [Abstract][Full Text] [Related]
20. An experimental comparison of human and bovine rhodopsin provides insight into the molecular basis of retinal disease. Morrow JM; Castiglione GM; Dungan SZ; Tang PL; Bhattacharyya N; Hauser FE; Chang BSW FEBS Lett; 2017 Jun; 591(12):1720-1731. PubMed ID: 28369862 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]