These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 26061862)

  • 1. A rational approach towards enhancing solar water splitting: a case study of Au-RGO/N-RGO-TiO2.
    Bharad PA; Sivaranjani K; Gopinath CS
    Nanoscale; 2015 Jul; 7(25):11206-15. PubMed ID: 26061862
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electronic Integration and Thin Film Aspects of Au-Pd/rGO/TiO
    Tudu B; Nalajala N; P Reddy K; Saikia P; Gopinath CS
    ACS Appl Mater Interfaces; 2019 Sep; 11(36):32869-32878. PubMed ID: 31414793
    [TBL] [Abstract][Full Text] [Related]  

  • 3. M-Au/TiO2 (M = Ag, Pd, and Pt) nanophotocatalyst for overall solar water splitting: role of interfaces.
    Melvin AA; Illath K; Das T; Raja T; Bhattacharyya S; Gopinath CS
    Nanoscale; 2015 Aug; 7(32):13477-88. PubMed ID: 26199221
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasmon-Sensitized Graphene/TiO
    Boppella R; Kochuveedu ST; Kim H; Jeong MJ; Marques Mota F; Park JH; Kim DH
    ACS Appl Mater Interfaces; 2017 Mar; 9(8):7075-7083. PubMed ID: 28170225
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrasound assisted synthesis of reduced graphene oxide (rGO) supported InVO
    Hafeez HY; Lakhera SK; Ashokkumar M; Neppolian B
    Ultrason Sonochem; 2019 May; 53():1-10. PubMed ID: 30833197
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Graphene supported plasmonic photocatalyst for hydrogen evolution in photocatalytic water splitting.
    Singh GP; Shrestha KM; Nepal A; Klabunde KJ; Sorensen CM
    Nanotechnology; 2014 Jul; 25(26):265701. PubMed ID: 24916183
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of electron storing, transferring and shuttling assets of reduced graphene oxide at the interfacial copper doped TiO2 p-n heterojunction for increased hydrogen production.
    Babu SG; Vinoth R; Kumar DP; Shankar MV; Chou HL; Vinodgopal K; Neppolian B
    Nanoscale; 2015 May; 7(17):7849-57. PubMed ID: 25853995
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface plasmon resonance enhanced direct Z-scheme TiO
    Zhang W; Hu Y; Yan C; Hong D; Chen R; Xue X; Yang S; Tian Y; Tie Z; Jin Z
    Nanoscale; 2019 May; 11(18):9053-9060. PubMed ID: 31025687
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Environmentally Sustainable Synthesis of a CoFe
    Hafeez HY; Lakhera SK; Narayanan N; Harish S; Hayakawa Y; Lee BK; Neppolian B
    ACS Omega; 2019 Jan; 4(1):880-891. PubMed ID: 31459365
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Insight into charge carrier separation and solar-light utilization: rGO decorated 3D ZnO hollow microspheres for enhanced photocatalytic hydrogen evolution.
    Wang J; Wang G; Jiang J; Wan Z; Su Y; Tang H
    J Colloid Interface Sci; 2020 Mar; 564():322-332. PubMed ID: 31918200
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study of the role of oxygen vacancies as active sites in reduced graphene oxide-modified TiO
    Zhang Y; Dai R; Hu S
    Phys Chem Chem Phys; 2017 Mar; 19(10):7307-7315. PubMed ID: 28239734
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanocrystalline anatase TiO2/reduced graphene oxide composite films as photoanodes for photoelectrochemical water splitting studies: the role of reduced graphene oxide.
    Morais A; Longo C; Araujo JR; Barroso M; Durrant JR; Nogueira AF
    Phys Chem Chem Phys; 2016 Jan; 18(4):2608-16. PubMed ID: 26698605
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrasonically aided selective stabilization of pyrrolic type nitrogen by one pot nitrogen doped and hydrothermally reduced Graphene oxide/Titania nanocomposite (N-TiO
    Ida S; Wilson P; Neppolian B; Sathish M; Karthik P; Ravi P
    Ultrason Sonochem; 2019 Oct; 57():62-72. PubMed ID: 31208620
    [TBL] [Abstract][Full Text] [Related]  

  • 14. TiO₂ nanoparticles-functionalized N-doped graphene with superior interfacial contact and enhanced charge separation for photocatalytic hydrogen generation.
    Mou Z; Wu Y; Sun J; Yang P; Du Y; Lu C
    ACS Appl Mater Interfaces; 2014 Aug; 6(16):13798-806. PubMed ID: 25078680
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reduced TiO2-Graphene Oxide Heterostructure As Broad Spectrum-Driven Efficient Water-Splitting Photocatalysts.
    Li L; Yu L; Lin Z; Yang G
    ACS Appl Mater Interfaces; 2016 Apr; 8(13):8536-45. PubMed ID: 26986700
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Middle Road Less Taken: Electronic-Structure-Inspired Design of Hybrid Photocatalytic Platforms for Solar Fuel Generation.
    Cho J; Sheng A; Suwandaratne N; Wangoh L; Andrews JL; Zhang P; Piper LFJ; Watson DF; Banerjee S
    Acc Chem Res; 2019 Mar; 52(3):645-655. PubMed ID: 30543407
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrothermal synthesis of CaIn2S4-reduced graphene oxide nanocomposites with increased photocatalytic performance.
    Ding J; Yan W; Sun S; Bao J; Gao C
    ACS Appl Mater Interfaces; 2014 Aug; 6(15):12877-84. PubMed ID: 24998484
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Possibly scalable solar hydrogen generation with quasi-artificial leaf approach.
    Patra KK; Bhuskute BD; Gopinath CS
    Sci Rep; 2017 Jul; 7(1):6515. PubMed ID: 28747732
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomolecule-mediated CdS-TiO2-reduced graphene oxide ternary nanocomposites for efficient visible light-driven photocatalysis.
    Dutta S; Sahoo R; Ray C; Sarkar S; Jana J; Negishi Y; Pal T
    Dalton Trans; 2015 Jan; 44(1):193-201. PubMed ID: 25369862
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hierarchical FeTiO3-TiO2 hollow spheres for efficient simulated sunlight-driven water oxidation.
    Han T; Chen Y; Tian G; Wang JQ; Ren Z; Zhou W; Fu H
    Nanoscale; 2015 Oct; 7(38):15924-34. PubMed ID: 26365495
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.