These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 26061892)

  • 1. Strong and Coherent Coupling of a Plasmonic Nanoparticle to a Subwavelength Fabry-Pérot Resonator.
    Konrad A; Kern AM; Brecht M; Meixner AJ
    Nano Lett; 2015 Jul; 15(7):4423-8. PubMed ID: 26061892
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Observation of strong coupling between one atom and a monolithic microresonator.
    Aoki T; Dayan B; Wilcut E; Bowen WP; Parkins AS; Kippenberg TJ; Vahala KJ; Kimble HJ
    Nature; 2006 Oct; 443(7112):671-4. PubMed ID: 17035998
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tunable strong coupling of two adjacent optical λ/2 Fabry-Pérot microresonators.
    Junginger A; Wackenhut F; Stuhl A; Blendinger F; Brecht M; Meixner AJ
    Opt Express; 2020 Jan; 28(1):485-493. PubMed ID: 32118974
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanofiber Fabry-Perot microresonator for nonlinear optics and cavity quantum electrodynamics.
    Wuttke C; Becker M; Brückner S; Rothhardt M; Rauschenbeutel A
    Opt Lett; 2012 Jun; 37(11):1949-51. PubMed ID: 22660083
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plasmonic CROWs for Tunable Dispersion and High Quality Cavity Modes.
    Wood JJ; Lafone L; Hamm JM; Hess O; Oulton RF
    Sci Rep; 2015 Dec; 5():17724. PubMed ID: 26631579
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wedge Waveguides and Resonators for Quantum Plasmonics.
    Kress SJ; Antolinez FV; Richner P; Jayanti SV; Kim DK; Prins F; Riedinger A; Fischer MP; Meyer S; McPeak KM; Poulikakos D; Norris DJ
    Nano Lett; 2015 Sep; 15(9):6267-75. PubMed ID: 26284499
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metallic Carbon Nanotube Nanocavities as Ultracompact and Low-loss Fabry-Perot Plasmonic Resonators.
    Wang S; Wu F; Watanabe K; Taniguchi T; Zhou C; Wang F
    Nano Lett; 2020 Apr; 20(4):2695-2702. PubMed ID: 32134275
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optical mode conversion in coupled Fabry-Perot resonators.
    Stone M; Suleymanzade A; Taneja L; Schuster DI; Simon J
    Opt Lett; 2021 Jan; 46(1):21-24. PubMed ID: 33362003
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strong plasmon-exciton coupling in MIM waveguide-resonator systems with WS
    Li H; Chen B; Qin M; Wang L
    Opt Express; 2020 Jan; 28(1):205-215. PubMed ID: 32118951
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Manipulating Light-Matter Interactions in Plasmonic Nanoparticle Lattices.
    Wang D; Guan J; Hu J; Bourgeois MR; Odom TW
    Acc Chem Res; 2019 Nov; 52(11):2997-3007. PubMed ID: 31596570
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasmonic Fabry-Pérot nanocavity.
    Sorger VJ; Oulton RF; Yao J; Bartal G; Zhang X
    Nano Lett; 2009 Oct; 9(10):3489-93. PubMed ID: 19673532
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fiber ring resonator with a nanofiber section for chiral cavity quantum electrodynamics and multimode strong coupling.
    Schneeweiss P; Zeiger S; Hoinkes T; Rauschenbeutel A; Volz J
    Opt Lett; 2017 Jan; 42(1):85-88. PubMed ID: 28059184
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microresonators in CMOS compatible substrate.
    Yegnanarayanan S; Soltani M; Li Q; Hosseini ES; Eftekhar AA; Adibi A
    J Nanosci Nanotechnol; 2010 Mar; 10(3):1508-24. PubMed ID: 20355540
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Observation of strong coupling between a micromechanical resonator and an optical cavity field.
    Gröblacher S; Hammerer K; Vanner MR; Aspelmeyer M
    Nature; 2009 Aug; 460(7256):724-7. PubMed ID: 19661913
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Revealing Strong Plasmon-Exciton Coupling between Nanogap Resonators and Two-Dimensional Semiconductors at Ambient Conditions.
    Qin J; Chen YH; Zhang Z; Zhang Y; Blaikie RJ; Ding B; Qiu M
    Phys Rev Lett; 2020 Feb; 124(6):063902. PubMed ID: 32109119
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced single-molecule spectroscopy in highly confined optical fields: from λ/2-Fabry-Pérot resonators to plasmonic nano-antennas.
    Kern AM; Zhang D; Brecht M; Chizhik AI; Failla AV; Wackenhut F; Meixner AJ
    Chem Soc Rev; 2014 Feb; 43(4):1263-86. PubMed ID: 24365864
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Near-Field Mapping of Optical Fabry-Perot Modes in All-Dielectric Nanoantennas.
    Frolov AY; Verellen N; Li J; Zheng X; Paddubrouskaya H; Denkova D; Shcherbakov MR; Vandenbosch GAE; Panov VI; Van Dorpe P; Fedyanin AA; Moshchalkov VV
    Nano Lett; 2017 Dec; 17(12):7629-7637. PubMed ID: 29083191
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Subwavelength Fabry-Perot resonator: a pair of quantum dots incorporated with gold nanorod.
    Liaw JW; Huang CH; Chen BR; Kuo MK
    Nanoscale Res Lett; 2012 Oct; 7(1):546. PubMed ID: 23031423
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diffractively coupled Fabry-Perot resonator with power-recycling.
    Britzger M; Friedrich D; Kroker S; Brückner F; Burmeister O; Kley EB; Tünnermann A; Danzmann K; Schnabel R
    Opt Express; 2011 Aug; 19(16):14964-75. PubMed ID: 21934858
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasmonic Metamaterials for Nanochemistry and Sensing.
    Wang P; Nasir ME; Krasavin AV; Dickson W; Jiang Y; Zayats AV
    Acc Chem Res; 2019 Nov; 52(11):3018-3028. PubMed ID: 31680511
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.